UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UNIDADE UNIVERSITÁRIA DE AQUIDAUANA PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOTECNIA

POTENCIAL PRODUTIVO DO CAPIM-PIATÃ E DESEMPENHO DE NOVILHOS NELORE EM SISTEMAS DE INTEGRAÇÃO LAVOURA-PECUÁRIA-FLORESTA

Acadêmica: Ruth Teles Barbosa

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UNIDADE UNIVERSITÁRIA DE AQUIDAUANA PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOTECNIA

POTENCIAL PRODUTIVO DO CAPIM-PIATÃ E DESEMPENHO DE NOVILHOS NELORE EM SISTEMAS DE INTEGRAÇÃO LAVOURA-PECUÁRIA-FLORESTA

Acadêmica: Ruth Teles Barbosa Orientador: Roberto Giolo de Almeida Coorientadora: Caroline Carvalho de Oliveira

"Dissertação apresentada ao Programa de Pós-graduação em Zootecnia, área de concentração em Produção Animal no Cerrado — Pantanal, da Universidade Estadual de Mato Grosso do Sul, como parte das exigências para a obtenção do título de Mestre em Zootecnia"

B211p Barbosa, Ruth Teles

Potencial produtivo do capim-piatã e desempenho de novilhos nelore em sistemas de integração lavoura-pecuária-floresta / Ruth Teles Barbosa. — Aquidauana, MS: UEMS, 2022.

77 p.

Dissertação (Mestrado) – Zootecnia – Universidade Estadual de Mato Grosso do Sul, 2022.

Orientador: Prof. Dr. Roberto Giolo de Almeida

1. Agroecossistema 2. Forragem 3. Sombreamento I. Almeida, Roberto Giolo de II. Título

CDD 23. ed. - 636.2

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO UNIDADE UNIVERSITÁRIA DE AQUIDAUANA PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOTECNIA ÁREA DE CONCENTRAÇÃO EM PRODUÇÃO ANIMAL

RUTH TELES BARBOSA

Dissertação submetida ao Programa de Pós-Graduação em Zootecnia, área de concentração em Produção Animal, como requisito para obtenção do grau de Mestra em Zootecnia.

DISSERTAÇÃO APROVADA EM 28/01/2022.

Documento assinado digitalmente

gov.br

ROBERTO GIOLO DE ALMEIDA Data: 28/04/2022 20:57:53-0300 Verifique em https://verificador.iti.br

Dr. Roberto Giolo de Almeida (Orientador)

Documento assinado digitalmente

ROBERTO GIOLO DE ALMEIDA Data: 28/04/2022 20:57:53-0300 Verifique em https://verificador.iti.br

Dr. Henrique Jorge Fernandes, UEMS (via videoconferência)

Documento assinado digitalmente

ROBERTO GIOLO DE ALMEIDA Data: 28/04/2022 20:57:53-0300 Verifique em https://verificador.iti.br

Dr. Pedro Nelson Cesar do Amaral, UEMS (via videoconferência)

EPÍGRAFE

"Deus abençoa os que, pacientemente suportam a provação. No final, receberão a coroa da vida, que Deus prometeu aos que o amam".

Tiago 1:12

"Tudo posso naquele que me fortalece".

Filipenses 4:13

Ao meu grandioso Deus por toda honra e toda glória.
À minha família, em especial aos meus pais, Miguel Neves e Ramona Teles.
À minha avó Cleuza Pedrozo, e avô Ariston Teles (*in memoriam*).

E ao meu namorado Cezar Santos.

Dedico.

AGRADECIMENTOS

Primeiramente agradeço a Deus por caminhar ao meu lado, me mostrar o caminho certo, dando forças e proteção para que eu conseguisse superar todos os obstáculos me fazendo seguir em frente e conseguir ter a oportunidade deste momento.

Agradeço à minha família (Pai, Mãe, Irmãos, Avós), pelo apoio incondicional durante toda a minha caminhada acadêmica, me proporcionando carinho, amor e inspiração. Que com seus exemplos e conselhos formaram os fundamentos do meu caráter, mostrando o caminho certo a ser seguido, fazendo com que eu me tornasse a pessoa que sou hoje. Obrigado por serem minha base, me dando força e coragem necessária para que eu tivesse a firmeza e a confiança para dar os meus passos e enfrentar com otimismo e garra as dificuldades impostas. Agradeço ao meu namorado Cezar, pelo companheirismo e incentivo sempre e acima de tudo, por acreditar na minha capacidade de enfrentar os desafios e superar as adversidades.

Aos professores que demonstraram dedicação e entusiasmo ao longo dessa caminhada e pelos conhecimentos transmitidos, principalmente ao Dr. Roberto Giolo de Almeida e a Dra. Caroline Carvalho de Oliveira, pela orientação, incentivo, dedicação, confiança e por sempre estarem dispostos a atenderem minhas necessidades e dúvidas, que com presteza auxiliaram nas atividades e discussões para conclusão deste trabalho. Meus sinceros agradecimentos pelo privilégio de poder conhecê-los e fazer parte do grupo.

À Universidade Estadual de Mato Grosso do Sul, Unidade Universitária de Aquidauana, pela oportunidade de fazer parte do corpo discente do programa de Pós-Graduação em Zootecnia. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e ao Programa Institucional de Bolsas aos Alunos da UEMS (PIBAP), pela concessão da bolsa de estudos.

Agradeço à EMBRAPA Gado de Corte pelo estágio, apoio e a infraestrutura fornecida para elaboração do projeto. A todos os membros da instituição que auxiliaram na execução do projeto, especialmente ao Odivaldo e Paulino, aos colegas do grupo de pesquisa, Elizandra, Caroline, Nivaldo, Flávio, Taís e Gabriel pela ajuda, apoio e paciência durante as realizações das atividades e pelos bons momentos vividos.

Meu singelo e muito obrigado em especial a Elizandra Fialho, que além de colega de profissão é primeiramente amiga e a todos que de forma direta ou indiretamente contribuíram para a elaboração, condução e conclusão deste trabalho. A todos que acreditam que a ousadia e o erro são caminhos para as grandes realizações.

Enfim é difícil, porém, não é impossível expressar em palavra a imensa gratidão pelas amizades feitas durante essa caminhada.

A TODOS VOCÊS, MEU SINCERO OBRIGADO!!!

SUMÁRIO

RESUMO	xiii
ABSTRACT	.xiv
CAPÍTULO 1 - CONSIDERAÇÕES GERAIS	1
1. INTRODUÇÃO	1
2. REVISÃO DE LITERATURA	2
2.1. Breve histórico da produção sustentável	2
2.2. Sistemas de produção em integração lavoura-pecuária-floresta (ILPF)	4
2.3. Componente forrageiro em sistemas integrados	6
2.3.1. Valor nutritivo de forragem em sistemas de ILPF	8
2.3.2. Brachiaria brizantha cv. BRS-Piatã	9
2.4. Componente arbóreo em sistemas integrados	10
2.5. Componente animal em sistemas integrados	12
2.6. Índices de conforto térmico	13
2.6.1. Índice de temperatura de globo negro e umidade (ITGU)	14
3. REFERÊNCIAS BIBLIOGRÁFICAS	15
CAPÍTULO 2 - PRODUCTIVE POTENTIAL OF PIATÃ GRASS A	٩ND
PERFORMANCE OF NELLORE STEERS UNDER INTEGRATED CR	OP-
LIVESTOCK-FORESTRY SYSTEMS	
ABSTRACT	25
1. INTRODUCTION	26
2. MATERIALS AND METHODS	
2.1.Location of the experimental area	28
2.2 Microclimate assessment	29

2.3. Forage component evaluation	30
2.4. Evaluation of animal performance	32
2.5. System Efficiency Index	33
2.6. Experimental design and statistical analysis	34
3. RESULTS	35
3.1. Microclimate	35
3.2. Forage production	37
3.3. Nutritive value of forage	40
3.4. Animal performance	42
4. DISCUSSIONS	44
5. CONCLUSIONS	50
REFERENCES	50
CAPÍTULO 3 - CONSIDERAÇÕES FINAIS	62

LISTA DE ABREVIATURAS

AFE Área foliar específica

CCN Carne Carbono Neutro

CEPEA Centro de Estudos Avançados em Economia Aplicada

cm Centímetro

DAP/DBH Diâmetro à altura do peito/Diameter at breast height

DF Densidade volumétrica de folhas

DIVMO Digestibilidade in vitro da matéria orgânica/Digestibility in vitro of

organic matter

DIVMS Digestibilidade in vitro da matéria seca

EMBRAPA Empresa Brasileira de Pesquisas Agropecuárias

FAO Organização das Nações Unidas para a Alimentação e Agricultura

FDA Fibra em detergente ácido

FDN/NDF Fibra em detergente neutro/Neutral detergent fiber

GMD/ADG Ganho de peso médio diário/Average daily gain

GPA Ganho de peso por área/Gain per area

ha Hectare

IAF Índice de área foliar

IBGE Instituto Brasileiro de Geografia e Estatística

ILF Integração Lavoura-Floresta

ILP/ICL Integração Lavoura-Pecuária/Integrated crop-livestock

ILPF/ICLF Integração Lavoura-Pecuária-Floresta/Integrated crop-livestock-

forestry

INMET Instituto Nacional de Meteorologia

IPF Integração Pecuária-Floresta

IRC Índice relativo de clorofila

ITGU/BGHI Índice de temperatura de globo negro e umidade/Black globe

humidity index

MO Matéria orgânica

MS Massa seca N Nitrogênio

NIRS Sistema de espectroscopia de reflectância de luz infravermelho

PB/CP Proteína bruta/Crud protein

PIB Produto interno bruto

RFA/PAR Radiação fotossinteticamente ativa/Photosynthetically active

radiation

SB Sistema Barreirão

SIPA Sistemas integrados de produção agropecuária

SPD Sistema de plantio direto

SSB Sistema Santa Brígida

SSF Sistema Santa Fé

SSM Sistema São Mateus

TA Temperatura do ar

TBS Temperatura de bulbo seco

TBU/WBT Temperatura de bulbo úmido/Wet bulb temperature

TCS Temperatura crítica superior

TEC Tonelada equivalente carcaça

TGN/BGT Temperatura de globo negro/Black globe temperature

TL/SR Taxa de lotação/Stocking rate

TPO Temperatura de ponto de orvalho

TRM Temperatura radiante média

UA/AU Unidade animal/Animal unit

UET Índice de uso eficiente da terra/Efficient land use index

UR/RH Umidade relativa do ar/Relative humidity

USDA Departamento de Agricultura dos Estados Unidos

LISTA DE FIGURAS

CAPÍTULO 1	
Figura 1. Localização da Zona Climática Intertropical	12
CAPÍTULO 2	
Figure 1. Climatic variables, rainfall (mm), maximum air temperature	
(Tmax, in °C), minimum air temperature (Tmín, in °C) and relative	
humidity (RH, in %) from the surroundings of the experimental area, data	
from December 2020 to May 2021	29
Figure 2. Schematic of microclimate sampling points	30
Figure 3. Scheme of sampling points for forage evaluation	31

LISTA DE TABELAS

CAPÍTULO 2

Table 1. Average values of black globe temperature (BGT) and black	
globe humidity index (BGHI), in integrated crop-livestock (ICL) and crop-	
livestock-forestry systems, ICLF-22 with density of 113 trees and ICLF-	
28 with 89 trees ha ⁻¹ , during the Summer (2020) and Autumn (2021), in	
the Cerrado region in Campo Grande-MS	36
Table 2. Characteristics of the pasture of Brachiaria brizantha cv. BRS	
Piatã (canopy height, soil cover, total biomass, volumetric density, leaf	
percentage, stem percentage, leaf: stem ratio, photosynthetically active	
radiation, PAR) in integrated crop-livestock (ICL) and crop-livestock-	
forestry systems (ICLF), with a density of 113 and 89 trees ha ⁻¹ , during	
the summer and autumn in the Cerrado region in Campo Grande-MS, in	
2020 and 2021	39
Table 3. Nutritive value of leaf blade and stem Brachiaria brizantha cv.	
BRS Piatã, under integrated crop-livestock (ICL) and crop-livestock-	
forestry systems (ICLF) with tree density of 113 and 89 trees ha-1, in	
Summer and Autumn in the Cerrado region in Campo Grande-MS, in	
2020 e 2021	41
Table 4. Animal performance under integrated crop-livestock (ICL) and	
crop-livestock-forestry systems, ICLF-22 with 113 trees ha-1 e ICLF-28	
with 89 trees ha ⁻¹ , in Summer and Autumn in the Cerrado region in	
Campo Grande - MS in 2020 e 2021	43

RESUMO

O sistema de integração lavoura-pecuária-floresta (ILPF), é um modelo de exploração sustentável, que integra atividades agrícolas, pecuárias e florestais, em uma mesma área, seja em consórcio, sucessão ou rotação, buscando efeitos sinérgicos entre os componentes do agroecossistema. Objetivou-se avaliar as características produtivas e valor nutritivo de Brachiaria brizantha cv. BRS Piatã e o desempenho de novilhos da raça Nelore em sistemas de integração com diferentes densidades de árvores, no Cerrado brasileiro. O experimento foi conduzido na Embrapa Gado de Corte, Campo Grande-MS, em área experimental de 18 hectares, dividida em 12 piquetes, com três sistemas de integração: integração lavoura-pecuária (ILP), integração lavoura-pecuáriafloresta (ILPF-28), com 89 árvores ha-1 e distância entre linhas simples de árvores de 28 metros e integração lavoura-pecuária-floresta (ILPF-22), com 113 árvores ha-1 e distância entre linhas simples de árvores de 22 metros. A forrageira foi amostrada em três pontos dispostos em dois transectos. Após o corte o material foi pesado e separado morfologicamente para determinação da produção. As frações separadas foram secas e moídas para quantificação do valor nutritivo por meio de espectroscopia de reflectância de luz próximo do infravermelho. Poderia ser observado que os animais permaneciam em um sistema de lotação contínua. As variáveis mensuradas foram ganho de peso médio diário (GMD), taxa de lotação (TL) e ganho de peso por área (GPA). O microclima foi determinado por meio da temperatura do globo negro (Tgn) e o conforto térmico por meio do índice de temperatura do globo negro e umidade (ITGU). Os sistemas que forneceram o sombreamento decorrente do componente arbóreo proporcionaram melhorias na qualidade da forragem, no entanto, não foram capazes de sustentarem ganhos por área e taxas de lotação semelhantes ao sistema ILP.

Palavras-chave: Agroecossistema, forragem, ganho médio diário, sombreamento, sustentável

ABSTRACT

The crop-livestock-forest integration systems (ICLF) is a sustainable exploitation model that integrates agricultural, livestock and forestry activities in the same area, whether in consortium, succession or rotation, seeking synergistic effects between the components of the agroecosystem. The objective of this study was to evaluate the productive characteristics and nutritional value of Brachiaria brizantha cv. BRS Piata and the performance of Nellore heifers in integration systems with different tree densities, in the Brazilian Cerrado. The experiment was conducted at Embrapa Beef Cattle, Campo Grande-MS, in an experimental area of 18 hectares, divided into 12 paddocks, with three integration systems: crop-livestock integration (ICL), crop-livestock-forest integration (ICLF- 28), with 89 trees ha⁻¹ and distance between simple tree lines of 28 meters, and croplivestock-forest integration (ICLF-22), with 113 trees ha-1 and distance between simple tree lines of 22 meters. Forage was sampled at three points arranged in two transects. After cutting, the material was weighed and morphologically separated to determine production. The fractions were dried and ground to quantify the nutritional value by means of near infrared light reflectance spectroscopy. For performance evaluation, two test animals remained in the systems and regulator animals were added according to the forage carrying capacity at the time of weighing. The variables measured were average daily weight gain (ADG), stocking rate (SR) and weight gain per area (GPA). The microclimate was determined by means of the black globe temperature (BGT) and thermal comfort through the black globe temperature and humidity index (BGHI). Shaded systems resulting from the presence of the forest component provided improvements in forage quality, however, they were not able to sustain gains per area and stocking rates similar to the ICL system.

Keywords: Agroecosystem, average daily gain, forage, shading, sustainable

CAPÍTULO 1 - CONSIDERAÇÕES GERAIS

1. INTRODUÇÃO

De acordo com a Organização das Nações Unidas (ONU), para Agricultura e Alimentação, a população mundial deverá atingir cerca de 10 bilhões de pessoas até 2050. Em paralelo ao crescimento populacional, há uma perspectiva de aumento entre 35-50% na demanda por produtos agrícolas entre os anos de 2012 e 2050, pressionando o uso dos recursos ambientais no mundo (FAO, 2019).

Com crescimento recorde em 2020, o produto interno bruto (PIB) do agronegócio brasileiro alcançou saldo positivo, destacando ainda, no primeiro trimestre de 2021, significativo aumento de aproximadamente 5,35%. Nessa perspectiva, nota-se que o excelente resultado para o agronegócio refletiu em alta para o PIB do ramo agrícola, cerca de (7,99%), tendo em vista que neste mesmo período, o PIB do ramo pecuário teve queda de (1,96%), resultante da escassez de bovinos prontos para o abate, e o aumento nos custos dos insumos destinados para as cadeias pecuárias (CEPEA, 2021).

De acordo com o IBGE (2019), o Brasil continua no ranking com o segundo maior rebanho bovino do mundo, sendo o principal exportador e o segundo maior produtor de carne. A pecuária é uma das atividades mais importantes do Brasil, devido as condições singulares à produção animal, no qual a principal fonte de alimento do bovino é feita exclusivamente a base de pastagens (XIMENES, 2021), cerca de 95% da sua totalidade. Por ser uma fonte economicamente viável, reflete fundamentalmente na qualidade da carne produzida no país. Isso envolve não apenas melhorias econômicas, mas, reflete também na preferência do consumidor que busca por modelos de produções que proporcionem melhor bem-estar para os animais (PEDREIRA et al., 2014).

Concomitante a produção de bovinos, o desenvolvimento sustentável é uns dos paradigmas mais discutidos atualmente. Motivados pelas séries de ataques direcionados ao desmatamento, destruição dos biomas, degradação ambiental, e pelos gases de efeito estufa emitidos pelos animais, faz com que a imagem da cadeia produtiva da carne bovina frente ao consumidor interno e externo piore. Segundo Kluthcouski & Cordeiro (2018), em decorrência do elevado consumo de produtos alimentícios, houve uma modernização no setor

agropecuário, contribuindo para o surgimento de sistemas de produções padronizados. Contudo, a ampliação da fronteira agropecuária, juntamente com o impulsionamento da utilização do solo, irrigação e uso de defensivos agrícolas, os serviços pecuários, agrícolas e florestais passaram a serem executados de maneira livre, excessiva e dissociada (BALBINO et al., 2012).

De acordo com Rodrigues et al. (2019), em âmbito mundial, é nítido observar os impactos econômicos, sociais e ambientais ocasionados pela atual conjuntura da degradação ambiental. Por este motivo, há uma incessante busca por práticas de manejos racionais e pesquisas que promovam a sustentabilidade, com adoções de práticas de produções economicamente eficientes.

Neste contexto, o sistema de integração lavoura-pecuária-floresta (ILPF), tornou-se uma alternativa capaz de otimizar o uso das áreas degradadas, combinando cultivos agrícolas, pecuários e arbóreos, de forma simultânea e/ou sequencial, gerando benefícios como aumento de matéria orgânica, sequestro de carbono pelo solo, melhoria das condições microclimáticas e do bem-estar animal, além de atender à demanda da população por produtos mais sustentáveis.

Diante do exposto, este estudo teve como objetivo geral avaliar as características produtivas e valor nutritivo de *Brachiaria brizantha* cv. BRS Piatã e o desempenho de novilhos da raça Nelore em sistemas de integração com diferentes densidades de árvores, no Cerrado brasileiro.

2. REVISÃO DE LITERATURA

2.1. BREVE HISTÓRICO DA PRODUÇÃO SUSTENTÁVEL

Segundo Carvalho et al. (2014), os sistemas integrados de produção agropecuária (SIPA), não é considerado um sistema da atualidade. Registro históricos relatam que os primeiros sistemas agrários da história da humanidade surgiram em decorrência da revolução agrícola neolítica, e nessa época o conceito de integração entre os cultivos com a exploração animal já existiam.

Os primeiros registros dessa integração aconteceram em 9000 a.C., na cidade de Jericó. Na Bíblia em (Gen. 4) relata que Cain tinha como responsabilidade o cultivo de grãos, enquanto Abel era responsável por cuidar dos animais. Seus desentendimentos ilustrariam, desde aquela época, a difícil

relação entre o componente animal e agrícola, cultivados em um mesmo sistema de produção (KEULEN & SCHIERE, 2004). No Brasil, os primeiros registros históricos de integração da agricultura com a pecuária voltada à produção de alimentos se deram nos séculos XVII e XVIII. Nessa época o componente animal era integrado com cultivos de mandioca e fumo, com finalidade de fornecer fonte de adubo por meio de seus dejetos e enriquecer o solo para a cultura subsequente (CARVALHO et al., 2014).

Ainda de acordo com o autor, na década de 1970, uma das grandes evoluções dos SIPAs nacionalmente conhecida, foi a criação de tecnologias para uso em sistema de plantio direto (SPD), onde o grande desafio era adaptar a produção pecuária com as práticas conservacionistas, para reverter situação de degrabilidade dos solos. Diante deste cenário, diversas pesquisas incentivaram o uso de sistemas de produção mais sustentáveis, elevando a produtividade vegetal e animal de forma mútua e principalmente preservando os recursos ambientais (EMBRAPA, 2019).

Deste modo, com a imprescindibilidade de desenvolver tecnologias voltadas para recuperação e a intensificação das pastagens, a Empresa Brasileira de Pesquisas Agropecuárias (EMBRAPA), criou alguns sistemas voltados a integração lavoura-pecuária (ILP), como por exemplo os Sistemas Barreirão (SB), Santa Fé (SSF), Santa Brígida (SSB), São Mateus (SSM), dentre outros (ALMEIDA et al., 2019b).

Desenvolvido em 1980 pela Embrapa Arroz e Feijão, o Sistema Barreirão, é um exemplo composto por um conjunto de métodos e práticas que visam recuperar ou reformar imensas áreas degradadas ou improdutivas no Brasil Central. No qual eram embasadas principalmente na consorciação da cultura do arroz com pastagem (KLUTHCOUSKI et al., 1991 citado por BALBINO et al., 2012).

Posteriormente, na década de 1990 uma nova tecnologia de renovação de pastagem foi desenvolvida, denominado Sistema Santa Fé. O sistema é fundamentado na produção consorciada de culturas graníferas, como o milheto, milho, arroz e o sorgo, com as principais forrageiras tropicais, principalmente do gênero *Urochloa* (*Syn. Brachiaria*) e *Megathyrsus* (*Syn. Panicum*), (ALVARENGA, 2004). De acordo com Balbino et al. (2012) e Gontijo Neto et al. (2018b), os principais motivos desse consórcio era a obtenção de forrageira e/ou

grãos para entressafra e, principalmente, a disponibilidade de palhada em qualidade e quantidade para uso em sistema de plantio direto.

Gontijo Neto et al. (2018a), mencionam que em decorrência da adoção do SPD à um aumento gradativo do teor de matéria orgânica (MO), que contribui para a vida microbiana na camada superficial do solo. Nessa condição, ocorre uma alteração na dinâmica de alguns nutrientes, em especial o nitrogênio (N), que se torna menos disponível para as plantas, em determinado período, em decorrência da imobilização. Com o aporte para o aumento do nitrogênio no solo, através da fixação biológica de nitrogênio atmosférico, surgiu então o Sistema Santa Brígida, criado em meados da década de 2000 (OLIVEIRA et al., 2010). O sistema consiste na inserção de culturas como fontes de adubos verdes no sistema produtivo, principalmente o guandu-anão consorciado com o milho, permitindo-se melhoria na qualidade das consorciações e principalmente à diversificação de palhadas ofertadas para o SPD.

Já o Sistema São Mateus, desenvolvido principalmente para regiões com pouca distribuição de chuvas e com solos mais arenosos, ficou amplamente conhecido por visar a antecipação da correção do solo, através da renovação ou recuperação da pastagem, para cultivo subsequente da cultura da soja em SPD, amortizando todo custo de implantação e diversificando as atividades, diluindo os riscos e ampliando a renda da propriedade (SALTON et al., 2013; GONTIJO NETO et al., 2018a).

2.2. SISTEMAS DE PRODUÇÃO EM INTEGRAÇÃO LAVOURA-PECUÁRIA-FLORESTA (ILPF)

Atualmente, em decorrência do crescimento pela demanda internacional por produtos agropecuários e a maior preocupação com o esgotamento dos recursos naturais, vem sendo amplamente discutidas as questões relacionadas aos impactos ambientais causados pelos sistemas produtivos. Cada vez mais, são requeridas informações sobre tecnologias que permitam uma melhor eficiência de uso da terra, reduzindo os impactos negativos da atividade agropecuária (ALMEIDA et al., 2019b). Isso evidência a necessidade de compreensão do conceito de sustentabilidade e sua implicação em determinadas condições de produção (ABRÃO et al., 2016).

Nesse contexto, locais em que os recursos naturais e a agricultura estão

sofrendo com a crescente pressão, se torna indispensável a implantação de práticas sustentáveis, para contornar e corrigir os desequilíbrios impostos pelos sistemas simplificados e padronizados que não priorizam o conservacionismo (PEDREIRA et al., 2018). Assim, é importante que diferentes modalidades e sistemas sejam planejados levando em consideração os recursos já disponíveis na fronteira agrícola, contribuindo significativamente para uma agricultura dentro dos preceitos da sustentabilidade (BALBINO et al., 2012).

Diante disso, o sistema que tem-se destacado é o sistema de integração lavoura-pecuária-floresta (ILPF), que consiste em um modelo de exploração agrícola no mesmo espaço e/ou tempo em uma mesma área da propriedade que incorpora componentes agrícolas, pecuários e florestais, seja em consorciação, sucessão ou em rotação de culturas, buscando efeitos sinérgicos entre os componentes do agroecossistema (BALBINO et al., 2011, 2012, 2019).

Segundo Gontijo Neto et al. (2014), os benefícios fundamentados do sistema de integração lavoura-pecuária-floresta é a promoção de melhorias nas condições físicas, químicas e biológicas do solo, otimização e intensificação da reciclagem de nutrientes e utilização do solo, redução financeira, redução na abertura de áreas, diversificação e estabilidade financeira do produtor rural, melhoria no bem-estar animal devido ao maior conforto térmico e a recuperação de áreas degradadas.

De acordo com Wruck et al. (2019), o ILPF contempla quatro modalidades distintas de sistemas de produções integradas, nos quais são identificadas através de seus arranjos e modelos espaciais, ajustados às diferentes condições sociais, culturais e econômicas de quem as utilizam.

Segundo Balbino et al. (2011), mencionado por Kichel et al. (2014), os sistemas de integrações são definidos, basicamente em:

• Integração Lavoura-Pecuária (ILP) ou Agropastoril: sistema de produção no qual integra componentes agrícolas e pecuários em consórcio, rotação ou sucessão, numa mesma área durante o mesmo ano agrícola ou múltiplos anos, em uma sequência ou intercalados. Possibilita que o solo seja explorado de forma econômica durante o ano, permitindo o aumento de oferta de carne, leite, grãos, com custos reduzidos, promovido pela sinergia entre os componentes.

- Integração Pecuária-Floresta (IPF) ou Silvipastoril: sistema de produção no qual integra componentes pecuários (animal e pastagem), juntamente com o componente arbóreo, em consórcio. É um sistema de produção destinados para áreas que possuem dificuldade na implantação de lavouras.
- Integração Lavoura-Floresta (ILF) ou Silviagrícola: sistema de produção no qual integra componentes arbóreos e agrícolas através da consorciação de espécies florestais com culturas agrícolas anuais ou perenes.
- Integração Lavoura-Pecuária-Floresta (ILPF) ou Sistema Agrossilvipastoril: sistema de produção no qual integra componentes agrícolas e pecuários com a inclusão dos componentes arbóreos numa mesma área, em consórcio, rotação ou sucessão. A lavoura é utilizada normalmente na fase inicial de implantação do componente florestal ou em ciclos, durante o desenvolvimento do sistema. O componente pecuário, em via de regra, é introduzido no sistema em substituição do componente agrícola.

Ferreira et al. (2012), relatam que nesse sistema de integração, a estratégia de rotacionar lavoura-pasto com o componente arbóreo, quando submetidos a um manejo adequado, é fornecer melhorias representativas de ordem socioeconômica, agronômica, zootécnica e ambiental. Os autores citam que o Brasil possui alta potencialidade para aumentar a implantação desses modelos produtivos, principalmente nas mediações do Brasil-Central, que possuem grandes extensões de áreas no qual as pastagens encontram-se em algum nível de degradação.

Entretanto, para o sucesso do sistema agrossilvipastoril, um dos requisitos é a escolha acertada das espécies do sistema (ANDRADE et al., 2004). Pelo fato de complementarem cultivos de diversos componentes numa mesma área, são requeridas diversas estratégias de manejos que permitam análise da dinâmica de cada componente e suas inter-relações. Desta forma, todas as análises são interpretadas como fatores conjuntos e não isolados, de modo que seja extremamente importante conhecer e compreender as características que cada componente exerce sobre o outro, buscando potencializar a produtividade no sistema (CARVALHO et al., 2011).

2.3. COMPONENTE FORRAGEIRO EM SISTEMAS INTEGRADOS

O Brasil tem aproximadamente 180 milhões de hectares de pastagens, sendo que o gênero *Brachiaria* ocupa cerca de 85% dessa área. O sucesso do cultivo dessas forrageiras se deve a seu fácil estabelecimento, além da adaptabilidade a diversos sistemas de produção e condições climáticas (MARTUSCELLO et al., 2009). De modo geral, é importante mencionar que algumas cultivares de forrageiras tem apresentado desempenho produtivo satisfatório, ainda assim, é ininterrupta a busca de conhecimentos sobre a morfogênese e interações da gramínea em ambiente sombreados, visando cada vez mais possibilitar um manejo mais eficiente das forrageiras (ALMEIDA et al., 2012, 2016).

Gontijo Neto et al. (2014), mencionam que durante a escolha da espécie forrageira é importante atentar-se ao seu bom crescimento, elevado valor nutricional, capacidade de perfilhamento, e sobretudo, sua tolerância em condições de sombreamento. Dentre as espécies de gramíneas que possuem certa tolerância ao sombreamento estão algumas das mais utilizadas para formação de pastagem no país, tais como: *Brachiaria decumbens* cv. Basilisk, *Brachiaria brizantha* cvs. Xaraés, Marandu e Piatã, *Brachiaria ruziziensis*, *Panicum maximum* cvs. Massai, Tanzânia e Vencedor (SOARES et al., 2016; ALMEIDA et al., 2019a).

Vale destacar, que o crescimento das espécies forrageiras é definido com base na sua atividade fotossintética, que é acumulada diariamente em decorrência dos recursos ambientais disponíveis no sistema. Quando expostas ao sombreamento, a taxa de crescimento é imediatamente restringida em função da limitação de luminosidade exigida para os processos fotossintéticos (ALMEIDA et al., 2019a).

Paciullo et al. (2007, 2008), relatam que em condições de baixas luminosidades ocorrem mudanças morfológicas na estrutura do dossel forrageiro, influenciando no aumento da interceptação de luz com menor índice de área foliar (IAF), em consequência de o aumento da área foliar específica (AFE). E em geral, a produção forrageira decresce com o aumento gradativo do sombreamento, contudo, algumas espécies têm-se mostrado eficientes, obtendo maiores rendimentos em condições com sombreamento moderado (CARVALHO, 2001).

2.3.1. VALOR NUTRITIVO DE FORRAGEM EM SISTEMAS DE ILPF

Em sistemas com a presença do componente florestal, o sombreamento pode alterar o desenvolvimento fisiológico e morfologia da espécie forrageira, tendo em vista que, nesta condição, as forrageiras irão priorizar o desenvolvimento da parte aérea em detrimento do sistema radicular e retardar o início do florescimento. Todavia, quando submetidas ao sombreamento, as gramíneas forrageiras tendem a apresentar melhor valor nutricional, elevado teor de proteína bruta (PB) e melhor digestibilidade *in vitro* da matéria seca (DIVMS). (ALMEIDA et al., 2012, 2019b).

Nesses sistemas, o nível de radiação que chega ao estrato forrageiro é muito dinâmico, e à medida que as forrageiras vão se desenvolvendo a uma elevação da interceptação luminosa pelo seu dossel, no qual acarreta modificações que alteram a produtividade e valor nutritivo das plantas forrageiras, e consequentemente o desempenho animal em pastejo (BARUCH e GUENNI, 2007).

Paciullo et al. (2016), confirmam que independentemente da espécie utilizada, não se deve esperar elevados níveis de produção forrageira em sistemas de produção submetidos a intenso nível de sombreamento. Além do mais, nessas condições, pode ou não haver aumento nos teores de nutrientes dessas forrageiras quando comparadas ao cultivo em pleno sol. Todavia, os conteúdos de fibra em detergente neutro (FDN) e fibra detergente ácido (FDA), podem sofrer variações devido as interações com os níveis de sombreamento, pelas práticas de manejo adotado e o estágio de maturação da planta forrageira (PACIULLO et al., 2011). Almeida et al. (2019a), citam que teores reduzidos de FDN e FDA são justificados pela redução da disponibilidade de fotoassimilados, visto que esse componente é direcionado para o aumento da capacidade fotossintética da planta.

Oliveira et al. (2014), avaliando os níveis de proteína bruta de amostras de forragens de *B. brizantha* cultivar piatã, durante a época da seca em uma área de ILP (pleno sol) e de ILPF com dois arranjos de árvores de Eucalipto (227 e 357 árvores ha⁻¹), observaram que nas áreas sombreadas houve um acréscimo de mais de 30% nos níveis de PB das lâminas foliares das forrageiras em relação àquelas cultivas em pleno sol. Além disso, os autores observaram que no sistema com maior sombreamento, não houve expressiva variação nos teores

de PB ao longo das estações do ano.

Pereira (2017), na mesma unidade experimental, relatou que os eucaliptos com altura de 25 a 27 m já proporcionavam 63% de sombreamento dentro do sistema. Nesta condição, o sistema de ILP apresentou maior produção de forragem, quando comparado com os sistemas ILPF. Ambos os sistemas apresentaram acréscimos de 9,7% e 13,1% nos teores de PB, a digestibilidade *in vitro* da matéria orgânica (DIVMO), apresentou em torno de 61,7% e 69,1%, e redução no FDA de 31,9% e 30,7% e no FDN de 69,2% e 67,1%. O autor menciona que independentemente do sistema ILPF ter apresentado melhor valor nutritivo da espécie forrageira não foi o suficiente para que o mesmo proporcionasse maiores ganhos individuais quando comparado ao sistema ILP. Concluindo que o sistema ILP, é mais eficiente em produção de forragem, e consequentemente, garante maior produção animal por área.

2.3.2. BRACHIARIA BRIZANTHA CV. BRS PIATÃ

O gênero *Urochloa* (Syn. *Brachiaria*) da espécie *brizantha* cultivar BRS Piatã foi lançada pela Embrapa Gado de Corte e parceiros em 2007, após 16 anos de estudos (VALLE et al., 2007). É uma planta perene, com hábito de crescimento cespitoso, podendo atingir cerca de 0,85 m à 1,10 m de altura. Apresenta lâmina foliar em formato linear, com textura áspera na face superior, com aproximadamente 45 cm de comprimento com bordas serrilhadas, seus colmos ramificados são verdes e finos com bainhas pilosas de coloração clara. É uma forrageira que pode ser amplamente cultivada no país, desde que sejam produzidas em condições adequadas de chuvas e invernos menos rigorosos. Além disso, é exigente em solos de média e alta fertilidade (JACK et al., 2013 citado por MARTINS, 2018).

O capim-piatã é uma espécie robusta com boa qualidade nutricional, alta produtividade, elevada taxa de crescimento e abundância de massa quando submetida ao pastejo (VALLE et al., 2007). Por possuir um florescimento precoce necessita de um acompanhamento rigoroso durante o manejo, evitando possível deterioração da estrutura do dossel forrageiro ocasionada pela redução da relação folha/colmo, aumento no número de perfilho aéreo e possível acamamento do pasto (BARROS, 2016).

O sucesso do manejo de qualquer pastagem depende de muitos fatores, mas, um dos primordiais é sempre respeitar a altura de pastejo recomendada para cada espécie/cultivar, permitindo maior acúmulo de reservas e favorecer a rebrotação. Nantes et al. (2013), concluíram que o cv. BRS Piatã possui grande flexibilidade em pastejo sob lotação contínua e pode ser manejado com altura de dossel entre 15 e 30 cm, sem trazer prejuízo para a produção animal.

2.4. COMPONENTE ARBÓREO EM SISTEMAS INTEGRADOS

O componente arbóreo em sistemas agrossilvipastoris, além de contribuir na geração de renda da propriedade a longo prazo, pode desempenhar inúmeras funções, tais como, produção de madeira, sementes, frutos, resina, látex e, também, incrementar a diversidade do sistema com a reciclagem de nutrientes que encontram-se nas regiões mais profundas, tornando-se indisponíveis para utilização pelas culturas anuais. Além, de atuar com quebravento o componente arbóreo favorece a proteção do solo, cria um microclima favorável para manutenção da umidade relativa dentro da área, beneficia a produção animal com maior conforto e, consequentemente, melhora o desempenho animal (GONTIJO NETO et al., 2014; ALMEIDA et al., 2019a).

Todavia, para escolha desse componente, deve-se levar em conta alguns aspectos relacionados a espécie, como: crescimento inicial rápido, ausência de efeitos alelopáticos, toxidez e boa arquitetura da copa, preferencialmente menos densa, permitindo melhor passagem de luz, suficiente para o desenvolvimento das espécies no sub-bosque, dentre outros (ARANHA et al., 2016; BARROS, 2016).

A espécie arbórea com maior destaque em sistemas integrados é o eucalipto. De acordo com Santarosa et al. (2014), o gênero *Eucalyptus* é originário da Austrália e da Indonésia, sendo introduzido no Brasil em meados de 1825. Seu grande impulso para fins comerciais teve início no século XX e, até hoje, espécies deste gênero florestal são destinadas à produção de celulose, madeira, tecidos sintéticos, entre outros. São mais de 730 espécies descritas no mundo, porém, não mais que 20 espécies são utilizadas (BEHLING NETO, 2012; SANTAROSA et al., 2014; PAULA, 2017).

O *Eucalyptus urograndis* é um híbrido desenvolvido no Brasil, por meio do cruzamento de *E. grandis*, com *E. urophyla*, sendo considerado o híbrido mais

plantado atualmente na região central do país. O principal objetivo do cruzamento é a obtenção de plantas com bom crescimento, característica essa do *E. grandis*, e aumento da densidade de madeira, melhoria no rendimento, rusticidade e resistência ao déficit hídrico, características típicas do *E. urophyla* (BEHLING NETO, 2012; COELHO JÚNIOR, 2015).

Recentemente em um levantamento sobre os materiais genéticos mais utilizados pela Embrapa e seus parceiros nas regiões Centro-Oeste e Norte, para uso em sistema de integração lavoura-pecuária-floresta, observou-se que os clones comerciais do *E. urophylla* por mais que tenham sido originalmente selecionados para uso em monocultivos tem apresentado grande predominância em sistema de integração em quase todo território brasileiro, principalmente devido sua adequação às condições climáticas típicas do Cerrado (REIS et al., 2021).

Os arranjos espaciais das plantas entre renques (linhas simples ou múltiplas) em sistemas integrados são modulados previamente com base no perfil e finalidade da propriedade rural. Os números de árvores plantadas variam em relação as atividades desejadas, sendo necessário a realização de desbastes quando as mesmas apresentarem competição entre si. Considerando que o produtor deseja como produto principal a carne, é recomendado o uso de espaçamentos mais vastos entre os renques, para reduzir o sombreamento nas linhas de plantios. Mas, caso o foco seja preconizar a produção de madeira (escoras, lenhas, estacas ou mourões e carvão) os espaçamentos das árvores serão mais adensados (ALVARENGA et al., 2012).

O arranjo florestal varia muito em relação aos seguintes fatores: espécie forrageira, espécie arbóreas, estratégia de implementação e o manejo adotado no sistema. O importante é que o sistema favoreça o aumento da forragem em qualidade e quantidade adequada, durante todo ciclo do sistema (MATOS et al., 2019) e permita o acesso de maquinários e implementos, projetando o favorecimento do manejo animal e a colheita futura do componente arbóreo.

Além das inúmeras vantagens reconhecidas do eucalipto, em termo de produção em sistemas de ILPF, são atribuídas diversas novas oportunidades para sua utilização. Neste sentido, uma dessas oportunidades está ligado com o avanço no desenvolvimento e certificação de protocolos dentro do conceito produtivo "Carne Carbono Neutro" ou (CCN). A Carne Carbono Neutro, é oriunda

de animais produzidos em sistemas que contemplam o componente arbóreo, principal contribuinte para o sequestro de carbono, promovendo a neutralização das emissões de metano entérico produzidos pelos animais (REIS et al., 2021).

2.5. COMPONENTE ANIMAL EM SISTEMAS INTEGRADOS

Grande parte das áreas de pastagens, do Brasil Central, encontram-se na zona intertropical (Figura 1), sob condições com elevada incidência de radiação solar durante quase todo o ano (ALVES, 2012).

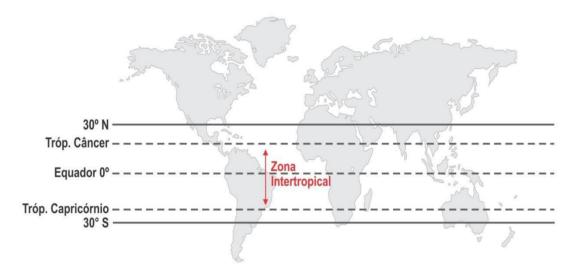


Figura 1. Localização da Zona Climática intertropical. Fonte: Alves (2012).

Nessas condições tropicais, devido as elevadas temperaturas o consumo dos animais é diretamente afetado, como forma estratégica durante o estresse térmico os bovinos reduzem a produção de calor metabólico diminuindo a ingestão de alimentos. Por sua vez, esse estresse pode influenciar na diminuição do ganho de peso, e afetar o desempenho animal (ARANHA et al., 2019).

É importante mencionar, que a zona de conforto térmico é caracterizada pela faixa de temperatura ambiente no qual os animais não precisam utilizar nenhuns mecanismos de termorregulação. As raças zebuínas são as mais tolerantes ao calor e a outras condições de estresses. Sua zona de conforto térmico é de aproximadamente 10°C e 27°C, pelo fato de o país apresentar temperaturas bem acima dessa zona de conforto, os bovinos priorizam lugares sombreados para pastejar (KICHEL et al., 2014).

Neste contexto, os sistemas de integração lavoura-pecuária-floresta

quando bem planejados, geram melhorias acentuadas sobre o desempenho produtivo, reprodutivo e bem-estar animal (PEDREIRA, 2013). Isso ocorre porque a sombra das árvores presentes no sistema bloqueia a radiação solar, diminuindo sua intensidade luminosa, contribuindo consideravelmente nas mudanças do microclima, como a velocidade do vento, a vaporização, temperatura e a umidade do ar, e, conforme a espécie arbórea componente do sistema, acarreta até na proteção de frios intensos. Cabe ressaltar que essa fração de radiação, é denominada de radiação fotossintéticamente ativa (RFA), seu fluxo de fótons corresponde a faixa de 400 a 700 nm do espectro solar, e é considerada a principal responsável pelo balanço da temperatura e da umidade relativa do ar (ALVES et al., 2019).

Gamarra et al. (2017), avaliando o efeito de três sistemas de integração, sendo dois ILPF com arranjos de (357 e 227 árvores de eucalipto ha⁻¹) e um sistema de ILP (controle), sob avaliações de desempenho animal de bovinos da raça nelore, observaram que realmente ocorre uma redução da forragem em locais com maiores taxas de sombreamento em relação ao sistema controle que é isento do componente florestal. De acordo com os autores, o sistema de ILP e ILPF (227 árvores ha⁻¹), apresentaram maiores valores de peso vivo, nas estações de verão e outono, devido os sistemas possuírem melhores rendimento da espécie forrageira. Todavia, na estação de inverno, os três sistemas apresentaram um desempenho semelhante, visto que normalmente essa estação é caracterizada pela baixa pluviosidade.

Diante desse cenário, a arborização desses sistemas é uma alternativa muito recomendada, pois, além de diminuir as condições climáticas, proporciona melhor conforto térmico aos animais, gerando uma manutenção eficaz para a cadeia produtiva da pecuária (PEDREIRA, 2013).

2.6. ÍNDICES DE CONFORTO TÉRMICO

O estresse térmico é definido como um ambiente que atua na temperatura corporal do animal, e ultrapassa sua zona de adaptação. Nos casos em que a faixa de temperatura do animal é considerada excelente e ocorre o mínimo de gasto de energia para conservar a sua termorregulação dizemos que o animal se encontra em sua zona de conforto (SANTOS & CABRAL, 2021).

O efeito dos fatores climáticos no ambiente afeta diretamente o

desempenho animal, principalmente em regiões tropicais e subtropicais. Conhecer as relações funcionais da alta temperatura e umidade relativa do ar, elevada incidência de radiação solar e baixa velocidade do vento entre o ambiente e o animal, permite adotar técnicas que elevam a eficiência da exploração pecuária, reduzindo o estresse térmico e melhorando a eficiência da perda de calor (MARCHETO et al., 2002; PIMENTA, 2016).

2.6.1. ÍNDICE DE TEMPERATURA DE GLOBO NEGRO E UMIDADE (ITGU)

Devido as condições climáticas dos países tropicais, a radiação tem grande importância sobre sua influência nos animais, com isso Buffington et al. (1981), desenvolveram o índice de temperatura de globo negro e umidade (ITGU), usando a temperatura de globo negro (tgn), em substituição à temperatura de bulbo seco e a temperatura de ponto de orvalho. É expresso pela seguinte equação:

$$ITGU = tgn + 0.36tpo - 330.08$$

Onde:

Tgn = temperatura de globo negro (°C);

tpo = temperatura de ponto de orvalho (°C);

A temperatura do globo negro é obtida através da utilização de uma esfera oca, de cor preta, onde no seu interior é colocado um sensor de temperatura. Essa temperatura de globo negro é obtida pela estimativa dos efeitos combinados da energia radiante, velocidade e temperatura do ar, no qual pode estimar uma medida de conforto térmico de um ambiente (KARVATTE JÚNIOR, 2014).

De acordo com Baccari Júnior (1998), esse índice é um excelente indicador do conforto térmico para os animais sob condições de extremo calor. Aranha et al. (2019), mencionam que índices de ITGU menores que 74 é considerado condições de conforto, de 79 a 84 significa situação de perigo, e valores acima de 84, indicam estado de emergência.

3. REFERÊNCIAS BIBLIOGRÁFICAS

ABRÃO, F. O.; FERNANDES, B. C.; PESSOA, M. S. Produção sustentável na bovinocultura: princípios e possibilidades. **Revista Brasileira de Agropecuária Sustentável (RBAS)**, v. 6, n. 4, p. 61-73, 2016.

ALMEIDA, E. M.; ALMEIDA, R. G.; MIYAGI, E. S.; FREITAS, P. V. D. X.; RIBEIRO, F. M.; FERNANDES, P. B.; GARCIA, E. C. Sistemas silvipastoris: uma abordagem sobre a interação dos componentes bióticos e abióticos. **Revista Científica Rural**, Bagé, RS, v. 21, n. 2, 2019a.

ALMEIDA, R. G.; BARBOSA, R. A.; ZIMMER, A. H.; KICHEL, A. N. Forrageiras em sistemas de produção de bovinos em integração. In: BUNGENSTAB, D. J.; ALMEIDA, R. G.; LAURA, V. A.; BALBINO, L. C.; FERREIRA, A. D. (ed.). **ILPF:** inovação com integração de lavoura, pecuária e floresta. Brasília, DF: Embrapa, 2019b. p. 379-388.

ALMEIDA, R. G.; BARBOSA, R. A.; ZIMMER, A. H.; KICHEL, A. N. Forrageiras em sistemas de produção de bovinos em integração. In: BUNGENSTAB, D. J. **Sistemas de integração lavoura-pecuária-floresta**: a produção sustentável. 2. (ed.). Brasília, DF: EMBRAPA, p. 88-94, 2012.

ALMEIDA, R. G.; PACIULLO, D. S. C.; MONTEIRO, R. A. C.; CASTRO, C. R. T.; MONTAGNER, D. B.; PEDREIRA, B. C. Manejo do pastejo em sistemas silvipastoris. In: SIMPÓSIO SOBRE MANEJO ESTRATÉGICO DA PASTAGEM, V. 8, 2016, Viçosa, MG. **Anais...** Viçosa, MG: UFV, p. 199-229, 2016.

ALVARENGA, R. C. Integração Lavoura – Pecuária. In: SIMPÓSIO DE PECUÁRIA DE CORTE. 3. **Anais...** Belo Horizonte, MG: UFMG, 2004.

ALVARENGA, R. C.; VIANA, M. C. M.; GONTIJO NETO, M. M. O Estado da arte da Integração Lavoura- Pecuária-Floresta no Brasil. In: SANTOS, L. D. T.; MENDES, L. R.; DUARTE, E. R.; GLÓRIA, J. R.; ANDRADE, J. M.; CARVALHO,

L. R.; SALES, N. L. P. (ed.). Integração lavoura-pecuária-floresta: potencialidades e técnicas de produção. Montes Claros, MG, p. 11-35, 2012.

ALVES, F. V. O componente animal em sistemas de produção em integração. In: BUNGENSTAB, D. J. (ed.). **Sistemas de integração lavoura-pecuária-floresta: a produção sustentável**. 2. ed. Brasília, DF: Embrapa, cap.10, p. 143-154, 2012.

ALVES, F. V. PORFIRIO-DA-SILVA, V. KARVATTE JUNIOR, N. Bem-estar animal e ambiência na ILPF. In: BUNGENSTAB, D. J.; ALMEIDA, R. G.; LAURA, V. A.; BALBINO, L. C.; FERREIRA, A. D. (ed.). **ILPF: inovação com integração de lavoura, pecuária e floresta**. Brasília, DF: Embrapa, Cap. 15, p. 209-223, 2019. Disponível em: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1112892. Acesso em: 10 mar. 2021.

ANDRADE, C. M. S.; VALENTIM, J. F.; CARNEIRO, J. C.; VAZ, F. A. Crescimento de gramíneas e leguminosas forrageiras tropicais sob sombreamento. **Pesquisa Agropecuária Brasileira**, v. 39, n. 3, p. 263-270, 2004.

ARANHA, A. S. Desempenho e bem-estar de bovinos nelore na fase de recria mantidos em sistemas integrados de produção agropecuária. 2016. 50f. Dissertação (Mestrado em Ciência e Tecnologia Animal), Faculdade de Ciência Agrárias e Tecnologia - UNESP, Campus de Dracena, SP, 2016.

ARANHA, H. S.; ANDRIGHETTO, C.; LUPATINI, G. C.; BUENO, L. G. F; TRIVELIN, G. A.; MATEUS, G. P.; LUZ, P. A. C.; SANTOS, J. M. F.; SEKIYA, B. M. S. VAZ, R. F. Produção e conforto térmico de bovinos da raça Nelore terminados em sistemas integrados de produção agropecuária. **Arquivo Brasileiro Medicina Veterinária Zootecnia**, v. 71, n. 5, p. 1686-1694, 2019.

BACCARI JÚNIOR, F. Adaptação de sistemas de manejo na produção de leite em clima quente. In: SIMPÓSIO BRASILEIRO DE AMBIÊNCIA NA PRODUÇÃO DE LEITE, 1. **Anais...** Piracicaba, SP, p. 24-67, 1998.

BALBINO, L. C.; BARCELLOS, A. O.; STONE, L. F. (ed.). **Marco referencial:** integração lavoura-pecuária-floresta. Brasília, DF: Embrapa, p. 130, 2011.

BALBINO, L. C.; CORDEIRO, L. A. M.; OLIVEIRA, P.; KLUTHCOUSKI, J.; GALERANI, P. R. VILELE, L. Agricultura sustentável por meio da integração lavoura-pecuária-floresta. **Informações agronômicas**. N. 138, jun. 2012.

BALBINO, L. C.; KICHEL, A. N.; BUNGENSTAB, D. J.; ALMEIDA, R. G. Sistemas de integração: conceitos, considerações, contribuições e desafios. In: BUNGENSTAB, D. J.; ALMEIDA, R. G.; LAURA, V. A.; BALBINO, L. C.; FERREIRA, A. D. (ed.). **ILPF: inovação com integração de lavoura, pecuária e floresta**. Brasília, DF: Embrapa, 2019. p. 835, p. 31-4.

BARUCH, Z.; GUENNI, O. Irradiance and defoliation effects in three species of the forage grass *Brachiaria*. **Tropical Grasslands**, v. 41, p. 269-27, 2007.

BARROS, J. S. Características produtivas e nutricionais do capim-piatã e desempenho de novilhas nelore em sistemas agrossilvipastoris. 2016. 75f. Dissertação (Mestrado em Ciência Animal) - Universidade Federal do Recôncavo da Bahia - Cruz das Almas, BA, 2016.

BEHLING NETO, A. Caracterização da forragem de capim-piatã e do microclima em sistemas de integração lavoura-pecuária-floresta, com dois arranjos de árvores de eucalipto. 2012. 66 f. Dissertação (Mestrado em Ciência Animal) - Universidade Federal de Mato Grosso, Cuiabá, MT, 2012.

BUFFINGTON, D. E.; COLAZZO AROCHO, A.; CATON, G. H.; PITT, D. Black globe humidity comfort index (BGHI) as comfort equation for dairy cows. **Transaction of the American Society Agricultural Engineering**, v. 24, n. 4, p. 711-714, 1981.

CARVALHO, M. M. Contribuição dos sistemas silvipastoris para a sustentabilidade da atividade leiteira. In: SIMPÓSIO SOBRE SUSTENTABILIDADE DE SISTEMAS DE PRODUÇÃO DE LEITE A PASTO E EM CONFINAMENTO. **Anais...** Juiz de Fora: Embrapa Gado de Leite, p. 85-108, 2001.

CARVALHO, P. C. F.; ANGHINONI, I.; KUNRATH, T. R.; MARTINS, A. P.; COSTA, S. E. V. G. A.; SILVA, F. D.; ASSMANN, J. M.; LOPES, M. L. T.; PFEIFER, F. M.; CONTE, O.; SOUZA, E. D. Integração soja-bovinos de corte no Sul do Brasil. 1. ed. Porto Alegre: Gráfica RJR Ltda, v. 1, p. 60, 2011.

CARVALHO, P. C. F.; MORAIS, A.; PONTES, L. S.; ANGHINONI, I.; SULC, R. M.; BATELLO, C. Definições e terminologias para sistema integrado de produção agropecuária. **Revista Ciência Agronômica**, v. 45, n. 5, p. 1040-1046, 2014.

CEPEA. **PIB do Agronegócio.** Impulsionado por ramo agrícola, pib do agronegócio cresce 5,35% no 1º trimestre de 2021. Disponível em: http://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx. Acesso em: 20 jun. 2021.

COELHO JÚNIOR, J. M. L. P. Biomassa e volumetria de híbridos de *Eucalyptus urograndi*s em sistema de integração lavoura-pecuária-floresta (ILPF) na Região Sul de Goiás. 2015. 63f. Dissertação (Mestrado em Agronomia: Produção Vegetal) – Escola de Agronomia, Universidade Federal de Goiás, Goiânia, GO, 2015.

EMBRAPA. **Integração lavoura-pecuária-floresta**: noções técnicas 2019. Disponível em: https://www.embrapa.br/tema-integracao-lavoura-pecuaria-floresta-ilpf/nota-tecnica. Acesso em: 20 abr. 2021.

FAO. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Rome, 2019.

FERREIRA, A. D.; ALMEIDA, R. G.; MACEDO, M. C. M.; LAURA, V. A.;

BUNGENSTAB, D. J.; MELOTTO, A. M. Arranjos espaciais sobre a produtividade e o potencial de prestação de serviços ambientais do eucalipto em sistemas integrados. In: CONGRESSO LATINO-AMERICANO DE SISTEMAS AGROFLORESTAIS PARA A PRODUÇÃO PECUÁRIA SUSTENTÁVEL, 7, **Anais...** 2012.

GAMARRA, E. L.; MORAIS, M. G.; ALMEIDA, R. G.; PALUDETTO, N. A.; PEREIRA, M.; OLIVEIRA, C. C. Beef cattle production in established integrated systems. **Semina: Ciências Agrárias**, Londrina, v. 38, n. 5, p. 3241-3252, 2017.

GONTIJO NETO, M. M.; BORGHI, E.; ALVARENGA, R. C.; VIANA, M. C. M. Integração lavoura-pecuária-floresta – ILPF. In: NOBRE, M. M.; OLIVEIRA, I. R. (ed.). **Agricultura de baixo carbono: tecnologias e estratégias de implantação.** Brasília, DF: Embrapa, cap. 5, p. 139-178, 2018a.

GONTIJO NETO, M. M.; BORGHI, E.; RESENDE, A. V.; ALVARENGA, R. C. Benefícios e desafios da integração lavoura-pecuária na melhoria da qualidade dos solos do cerrado. **Informações agronômicas**. N. 161, p. 9-21, mar. 2018b.

GONTIJO NETO, M. M.; VIANA, M. C. M.; ALVARENGA, R. C.; SANTOS, E. A.; SIMÃO, E. P.; CAMPANHA, M. M. Sistemas de integração lavoura-pecuária-floresta em minas gerais. **Boletim de Indústria Animal**, Nova Odessa, v. 71, n. 2, p. 183-191, 2014.

IBGE. **Pesquisa da Pecuária Municipal 2019**. Disponível em: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html. Acesso em: 10 maio. 2021.

JACK, L.; BRAZ, T. G. S.; MARTUSCELLO, J. A. Gramíneas de clima tropical. In: REIS, R. A.; BERNARDES, T. F.; SIQUEIRA, G. R. Forragicultura: ciência, tecnologia e gestão dos recursos forrageiros. 1 ed. São Paulo, Jaboticabal: UNESP, 2013. p. 109-119.

KARVATTE JÚNIOR, N. Microclima em sistemas de integração e

características quanti-qualitativas da sombra de espécies arbóreas nativas e cultivada, no cerrado. 2014. 81f. Dissertação (Mestrado em Zootecnia), Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, PR, 2014.

KEULEN, H.; SCHIERE, H. Crop-livestock systems: old wine in new bottles? In: Fischer, T. et al. (ed.). New directions for a diverse planet. **Proceedings...** IV International Crop Science Congress, Austrália, 2004.

KICHEL, A. N.; COSTA, J. A. A.; ALMEIDA, R. G.; PAULINO, V. T. Sistemas de integração lavoura-pecuária-floresta (ILPF) - experiências no Brasil. **Boletim de Indústria Animal**, Nova Odessa, v. 71, n. 1, p. 94-105, 2014.

KLUTHCOUSKI, J.; CORDEIRO, L. A. M. Do plantio direto aos sistemas de integração entre lavoura e pecuária: trajetórias da produtividade agropecuária. **Visão 2030: o futuro da agricultura brasileira**. Brasília, Embrapa, 2018.

KLUTHCOUSKI, J.; PACHECO, A. R.; TEIXEIRA, S. M.; OLIVEIRA, E. T. Renovação de pastagens do cerrado com arroz: I. Sistema Barreirão. Goiânia: Embrapa-CNPAF, p. 20, 1991 (Embrapa-CNPAF. Documentos, 33).

MARCHETO, F. G.; NAAS, I. A., SALGADO, D. Efeito das temperaturas de bulbo seco e de globo negro e do índice de temperatura e umidade, em vacas em produção alojadas em sistema de free-stall. **Braz. J. vet. Res. anim. Sci.**, São Paulo, v. 39, n. 6, p. 320-323, 2002.

MARTINS, D. C. **Avaliação de sistemas integrados: ILP E ILPF.** 2018. 51f. Dissertação (Mestrado em Zootecnia) – Universidade Federal do Jequitinhonha e Muruci, Diamantina, MG, 2018.

MARTUSCELLO, J. A.; JANK, L.; GONTIJO NETO, M. M.; LAURA, V. A.; CUNHA, D. N. F. V. Produção de gramíneas do gênero *Brachiaria* sob níveis de sombreamento. **Revista Brasileira de Zootecnia**, v. 38, n. 7, p. 1183-1190, 2009.

MATOS, F. A.; SALLES, N. A.; SANTOS, S. C.; LOURENTE, E. R. P. Influência do arranjo espacial das aleias de eucalipto em sistema silvipastoril no acúmulo de biomassa e propriedades bromatológicas da Urochloa brizantha cv. Xaraés - Capítulo 30. In: BUNGENSTAB, D. J.; ALMEIDA, R. G.; LAURA, V. A.; BALBINO, L. C.; FERREIRA, A. D. (Org.). **ILPF - Inovação com integração de lavoura, pecuária e floresta**. 1ed. Brasília-DF: EMBRAPA, v. 1, p. 493-502, 2019.

NANTES, N. N.; EUCLIDES, V. P. B.; MONTAGNER, D. B.; LEMPP, B.; BARBOSA, R. A.; GOIS, P. O. Desempenho animal e características de pastos de capim-piatã submetidos à diferentes intensidades de pastejo. **Pesquisa Agropecuária Brasileira**, v. 48, p. 114-121, jan. 2013.

OLIVEIRA, P.; KLUTHCOUSKI, J.; FAVARIN, J. L.; SANTOS, D. C. **Sistema Santa Brígida** – Tecnologia Embrapa: consorciação de milho com leguminosas. Santo Antônio, de Goiás: Embrapa Arroz e Feijão, 2010. p. 16. (Embrapa Arroz e Feijão. Circular Técnico, 88).

OLIVEIRA, C. C.; VILLELA, D. S.; ALMEIDA, R. G.; ALVES, F. V.; NETO BEHLING, A.; MARTINS, P. G. M. A. Performance of Nellore heifers, forage mass, and structural and nutritional characteristics of *Brachiaria brizantha* grass in integrated production systems. **Tropical Animal Health and Production.** n. 46, p. 167-172, 2014.

PACIULLO, D. S. C.; CAMPOS, N. R.; GOMIDE, C. A. M.; CASTRO, C. R. T.; TAVELA, R. C.; ROSSIELLO, R. O. P. Crescimento de capim-braquiária influenciado pelo grau de sombreamento e pela estação do ano. **Pesquisa agropecuária brasileira**, Brasília, v. 43, n. 7, p. 917-923, jul. 2008.

PACIULLO, D. S. C.; CARVALHO, C. A. B.; AROEIRA, L. J. M.; MORENZ, M. F.; LOPES, F. C. F.; ROSSIELLO, R. O. P. Morfofisiológica e valor nutritivo do capim-braquiária sob sombreamento natural e a sol pleno. **Pesquisa Agropecuária Brasileira**, v. 42, p. 573-579, 2007.

PACIULLO, D. S. C.; GOMIDE, C. A. M; CASTRO, C. R. T.; FERNANDES, P. B.;

MULLER, M. D.; PIRES, M. F. A.; FERNANDES, E. N.; XAVIER, D. F. Características produtivas e nutricionais do pasto em sistemas agrossilvipastoril, conforme distância das árvores. **Pesquisa Agropecuária Brasileira**, v. 46, p. 1176-1183, out, 2011.

PACIULLO, D. S. C.; GOMIDE, C. A. M.; CASTRO, C. R.T.; MAURÍCIO, R. M., FERNANDES, P. B.; MORENZ, M. J. F. Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates. **Grass and Forage Science**, 2016.

PAULA, N. Caracterização do dossel forrageiro e do sombreamento em sistema de integração lavoura-pecuária-floresta (ILPF) em Porto Velho, Rondônia. 2017. 55f. Dissertação (Mestrado em Desenvolvimento Regional e Meio Ambiente) – Fundação Universidade Federal de Rondônia, Porto Velho, RO, 2017.

PEDREIRA, B. C. **Pecuária de corte na ILPF**: a escolha do componente animal. Sinop, MT: Embrapa Agrossilvipastoril; Sete Lagoas, MG: Embrapa Milho e Sorgo, 2013. 1 folder.

PEDREIRA, B. C.; BEHLING, M.; WRUCK, F. J.; ANTONIO, D. B. A.; MENEGUCI, J. L. P.; CARNEVALLI, R. A.; LOPES, L. B.; TONINI, H. Sistemas De Integração Lavoura-Pecuária-Floresta. In Simpósio de Pecuária Integrada: Intensificação da produção animal em pastagens. 1ed. Brasília; **Anais...** Brasília: Embrapa, p. 259-294, 2014.

PEDREIRA, B. C.; CARVALHO, P.; NASCIMENTO, H. L. B.; DOMICIANO, L. F.; MOMBACH, M. A.; PEREIRA, D. H.; CABRAL, L. S; CHIZZOTTI, F. H. M.; ABREU, J. G. **SIPA: uma nova perspectiva para a pecuária brasileira**. In: Congresso Brasileiro de Sistemas Integrados de Produção, 2018, Rondonópolis. Anais do Congresso Brasileiro de Sistemas Integrados de Produção. Rondonópolis: UFMT, 2018.

PEREIRA, M. Produtividade forrageira, degradabilidade ruminal do capim-

piatã (*Brachiaria brizantha* cv. BRS Piatã) e desempenho de bovinos de corte em sistemas de integração lavoura-pecuária-floresta. 2017. 68f. Dissertação (Mestrado em Ciência Animal), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 2017.

PIMENTA, P. S. **Parâmetros fisiológicos e índice de tolerância ao calor em novilhos Senepol.** 2016. 60f. Dissertação (Mestrado em Zootecnia), Universidade Federal de Goiás, Goiânia, GO, 2016.

REIS, C. A. F.; SANTOS, A. M.; PACHECO, A. R. Potencialidades e desafios para o melhoramento genético de eucaliptos aos sistemas de integração. In: OLIVEIRA, E. B. de; PINTO JUNIOR, J. E. (ed.). (Org.). O eucalipto e a Embrapa: quatro décadas de pesquisa e desenvolvimento. 0ed. Brasília: Embrapa, v. 0, p. 1133-1146, 2021.

RODRIGUES, L. M.; TEODORO, A. G.; SANTOS, A. J. M.; BACKES, C.; ROCHA, J. H. T.; GIONGO, P. R. E DOS SANTOS, Y. L. A. Integração Lavoura-Pecuária-Floresta: Interação entre Componentes e Sustentabilidade do Sistema. **Archivos de zootecnia**, v. 68, n. 263, p. 448-455, 2019.

SANTAROSA, E.; PENTEADO JR, J. F.; GOULART, I. C. G. R. (ed.). **Transferência de tecnologia florestal**: cultivo de eucalipto em propriedades rurais: diversificação da produção e renda. Brasília, DF: Embrapa, 2014. p. 138.

SALTON, J. C.; KICHEL, A. N.; ARANTES, M.; KRUKER, J. M.; ZIMMER, A. H.; MERCANTE, F. M.; ALMEIDA, R. G. **Sistema São Mateus**: sistema de integração lavoura-pecuária para a região do Bolsão Sul-Mato-Grossense. Dourados, MS: Embrapa Agropecuária Oeste, 2013. 6 p. (Embrapa Agropecuária Oeste. Comunicado Técnico, 186).

SANTOS, G. C. L.; CABRAL, A. M. D. Índices bioclimáticos, modelagem matemática e índices estatísticos para avaliação de modelos utilizados na estimativa do conforto térmico animal. **Research, Society and Development**, v. 10, n. 3, 2021.

SOARES, K. A. R. S. C.; SILVA, H. M.; SOUZA, H. A.; STINGUEL, H. Produção de forragem em sistemas integrados. **Revista Eletrônica Nutritime**, v. 13, p. 4738-4748, 2016.

VALLE, C. B.; EUCLIDES, V. P. B.; VALÉRIO, J. R.; MACEDO, M. C. M.; FERNANDES, C. D.; DIAS-FILHO, M. B. *Brachiaria brizantha* cv. Piatã: uma forrageira para diversificação de pastagens tropicais. **Seed News**, v. 11, n. 2, p. 28-30, 2007.

WRUCK, F. J.; BEHLING, M.; LANGE, A. Produção da lavoura em sistemas de ILPF. In: BUNGENSTAB, D. J.; ALMEIDA, R. G.; LAURA, V. A.; BALBINO, L. C.; FERREIR, A. D. (Org.). **ILPF: inovação com integração de lavoura, pecuária e floresta**. 1ed.Brasília, DF: Embrapa, v. 1, p. 319-345, 2019.

XIMENES, L. F. **Segmento de carne bovina**. Caderno Setorial ETENE. Fortaleza: Banco do Nordeste do Brasil, ano 6, n. 158, p. 11, abr, 2021. Disponível em: https://www.bnb.gov.br/s482-dspace/handle/123456789/714. Acesso: 18 de mai. 2021.

- 1 CAPÍTULO 2 PRODUCTIVE POTENTIAL OF PIATÃ GRASS AND
- 2 PERFORMANCE OF NELLORE STEERS UNDER INTEGRATED CROP-
- 3 LIVESTOCK-FORESTRY SYSTEMS*

4

- 5 *Artigo redigido conforme as normas da "REVISTA BRASILEIRA DE
- 6 ZOOTECNIA".

7

- 8 Ruth Teles Barbosa¹, Caroline Carvalho de Oliveira², Darliane de Castro Santos²,
- 9 Nivaldo Karvatte Junior², Taís Centurião Delmondes³, Fabiana Villa Alves⁴, Manuel
- 10 Claudio Motta Macedo⁵, Davi José Bungenstab⁵, Roberto Giolo de Almeida⁵.

11

- 12 ¹ Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do
- 13 Sul UEMS, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural, Aquidauana MS,
- 14 79200-000, Brasil, ruthy_telles@hotmail.com.
- 15 ² Programa de Pós-Graduação em Ciências Agrárias Agronomia, Instituto Federal
- 16 Goiano, Rodovia Sul Goiana, Km 01 Zona rural, Rio Verde, GO, 75901-970, Brasil.
- 17 ³ Departamento de Ciências Agrárias, Universidade Católica Dom Bosco UCDB, Av.
- 18 Tamandaré, 6000 Jardim Seminário, Campo Grande, MS, 79117-900, Brasil.
- 19 4 Ministério da Agricultura, Pecuária e Abastecimento, Esplanada dos Ministérios -
- 20 Bloco D, Brasília, DF, 70043-000, Brasil.
- ⁵ Embrapa Gado de Corte, Avenida Rádio Maia, 830, Campo Grande, MS, 79106-550,
- 22 Brasil.

23

- 24 **ABSTRACT:** Goal was to evaluate productive traits and nutritional value of
- 25 Brachiaria brizantha cv. BRS Piatã and the performance of Nellore steers under
- 26 integrated systems with different tree densities in the Brazilian Cerrado. The trial

was conducted at Embrapa Beef Cattle, Campo Grande-MS, in an experimental area of 18 hectares, divided into 12 paddocks, under three integrated systems: croplivestock (ICL), crop-livestock-forest (ICLF-28), with 89 trees ha-1 and distance between trees on single rows of 28 meters and crop-livestock-forest (ICLF-22), with 113 trees ha⁻¹ and distance between trees on single rows of 22 meters. Experimental design was a randomized block in split plot with four repetitions. Treatments on plots correspond to the three integrated systems (ICL, ICLF-28 and ICLF-22) and on subplots, local major seasons (summer and autumn). As for results, forage availability was higher in the ICL system (4748 kg of DM ha-1), higher also on Summer (3565 kg of DM ha⁻¹), crude protein values (13.63 and 13.23%), and leaf DIVMO (51.07 and 50.24%) were higher in ICLF systems in Autumn. Average daily gain (ADG) did not differ among systems and seasons, while animal weight gain per area (GPA) and stocking rate (SR) were higher in the ICL system (148 kg ha-1 and 1.93 AU ha⁻¹) respectively, and even higher during the summer. Tree density negatively affected forage availability in summer, decreasing GPA and SR. ICLF systems show some losses on animal performance. However, once they become known and accounted for, they could be compensated by other gains, such as environmental services, remaining an alternative when diversification is needed on cattle ranching areas.

4546

47

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Keywords: forage, nutritional value, stocking rate, tree density

48

49

50

51

52

53

54

55

56

1. Introduction

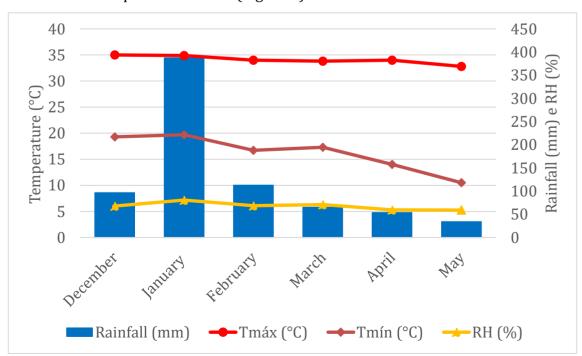
About 98% of Brazilian beef is sourced from production systems based on grazing (Medeiros et al., 2021). The exploitation of this natural resource, if mismanaged, associated with low productive indexes, compromises sustainability that leads to loss of vigor, yields and degradation, hindering the natural process of pasture recovery (Melo et al., 2015). Pasture degradation reduces animal performance and culminates in soil and natural resource losses. The main causes of this degradation may be inadequate plant nutrition, excessive stocking rates and the

lack of conservation practices, which contribute to the emergence of environmental, economic and social problems (Macedo, 2009; Braz et al., 2012; Carvalho et al., 2017; Aranha et al., 2019). Given this scenario, one of the alternatives for harvesting food from grazing systems, respecting environmental and social demands, is through techniques of intensification following correct and sustainable ecologic and agricultural production (Schuster et al., 2019).

To this end, integrated production systems, especially integrated crop-livestock (ICL) and crop-livestock-forestry (ICLF), aim at the continuous use of agricultural areas in a rational, diversified and sustainable way, adding value to products and promoting improvements in soil quality over time (Balbinot Junior et al., 2009; Geremia et al., 2018). The ICLF system, which integrates crop, livestock and forestry activities, is a combination of sustainable production strategies for milk, beef, grains, fibers, wood, among others. It has high versatility, in consortium, succession or rotation, aiming at synergistic effects among all the components involved in the agroecosystem, also contributing to the improvement of animal welfare (Balbino et al., 2011; Kichel et al., 2014; Silva et al., 2020).

With the presence of the tree component in the production system, the quantity and quality of the radiation that reaches the forage extract are compromised. Thus, it is essential to analyze the dynamics and behavior of forage species under such shadings, since their production will reflect on animal performance (Geremia et al., 2018; Martins et al., 2020).

This work has evaluated productive characteristics and nutritional value of *Brachiaria brizantha* hp. BRS Piatã and the performance of Nellore steers under integrated systems with different tree densities in the Brazilian Cerrado.


2. Materials and Methods

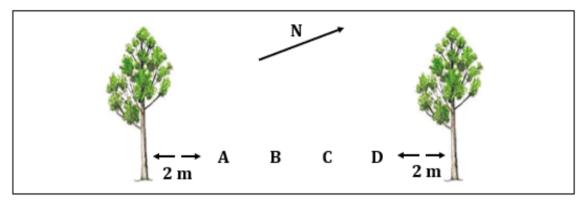
2.1. Location of the experimental area

The trial was conducted at Embrapa Beef Cattle, in Campo Grande-MS (latitude 20° 24′ Sul; 54° 42′ of West longitude, and 530 m of altitude), from December 2020 to May 2021. Background information on the area is described in detail by Oliveira et al. (2014), Pereira et al. (2014) and Gamarra et al. (2017). All procedures and methodologies applied were previously approved by the Ethics and Animal Use Committee of Embrapa Beef Cattle, under protocol number 013/2014.

Soil of the experimental area is Dystrophic Red Latosol (Santos et al., 2006). The climatic pattern of the region, according to the Köppen classification, is humid tropical, it is in the transition range between CFA and Aw, with well-defined occurrence of the dry period (April to September) and a rainy season (October to March), with average annual rainfall of 1.560 mm.

The meteorological data surrounding the experimental area were recorded through a meteorological station (A702 - INMET), located at Embrapa Gado de Corte, 3 km from the experimental area (Figure 1).

Figure 1. Climatic variables, rainfall (mm), maximum air temperature (Tmax, in °C), minimum air temperature (Tmín, in °C) and relative humidity (RH, in %) from the surroundings of the experimental area, data from December 2020 to May 2021.


The experimental area with 18 hectares consisted of three integrated systems, established in 2008, divided into 12 plots of 1.5 ha each (4 plots per system), in which: (i) crop-livestock system (ICL), control; (ii) crop-livestock-forestry system (ICLF-22), with tree arrangement of 22x4 m and density of 113 trees ha⁻¹; (iii) crop-livestock-forestry system (ICLF-28), with tree arrangement of 28x4 m and density of 89 trees ha⁻¹. The forage component of the pasture was piatā grass (*Brachiaria brizantha* hp. BRS Piatā) and the trees were eucalyptus urograndis (*Eucalyptus grandis x E. urophyla*, clone H13) in the ICLF-22 and ICLF-28 systems, in single rows and spacing, within the rows, of 4 meters between trees. Tree growth was evaluated annually. In July 2020 the ICLF-28 system presented a height of 32.6 m and diameter at breast height (DBH) of 33.4 cm and the ICLF-22 system the height was 31.6 m and DBH was 34.6 cm. In May 2021, the height was 33.4 m and DBH was 34.59 cm for the ICLF-28 system, as well, 32.74 m height and DBH of 36.1 cm for the ICLF-22 system, respectively.

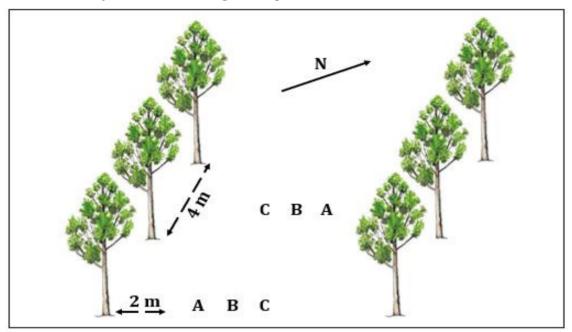
Based on results from soil analysis, maintenance fertilizer for 2020 was carried out in January, with application of 250 kg ha⁻¹ of the formula 0-20-20 and 165 kg ha⁻¹ of nitrogen as urea. In February 2021, 250 kg ha⁻¹ of the formula 0-20-20 and 125 kg ha⁻¹ of nitrogen as urea were applied.

2.2. Microclimate assessment

To collect microclimate data (black globe temperature), monthly assessments were performed for four consecutive days. In paddocks with

eucalyptus trees, samples were taken in a transect perpendicular to the rows, where two points were delimited in the sun, and two points in the shade for every paddock (Figure 2). In the ICL areas, samplings were carried out in places representative of the environment in which animals were.

Figure 2. Schematic of microclimate sampling points


Measurements of black globe temperatures (BGT in °C) were obtained by a globe thermometer adapted in matte black buoys, according to the model proposed by Souza et al. (2002). From the average of the microclimate data of each system, in the two seasons, the following microclimatic index was calculated:

• black globe temperature index and humidity (Bond and Kelly, 1955): BGHI = 0.7 WBT + 0.2 BGT + 0.1 Ta, where: WBT = wet bulb temperature in °C; BGT = black globe temperature in °C; Ta = air temperature in °C.

2.3. Forage component evaluation

To evaluate structural and nutritional traits of the forage, two transects perpendicular to the rows of trees were considered, per plot. In each transect, three equidistant sampling points (A, B and C) were delimited, where A was located 2 m from tree rows, due to the projection of the canopy shadow, C the central point of the paddock and B the intermediate position to points A and C, totaling 6 sampling

points per plot, collected at intervals of 28 days (Figure 3). To the ICL, the 6 points were randomly chosen the along of the paddock.

Figure 3. Scheme of sampling points for forage evaluation

At each point, with a sample area of 1 m², two heights were measured using a ruler graduated in cm. The visual evaluation method was used to assess soil cover, assigning values from 0% (uncovered soil) to 100% (soil fully covered by forage). Measurements of photosynthetically active radiation (PAR) occurred in conjunction with forage evaluation, using the AccuPAR portable ceptometer (model LP-80). Readings were taken above forage canopy, with reference to full sun. Subsequently, the forage was cut close to the ground, using a motorized coastal harvester. The samples collected (green material) were weighed shortly after cutting, and then composite samples were made for points with the same position in each transect, and a representative subsample was taken for subsequent morphological separation of the leaf components (leaf blade), stem (stem + sheath), inflorescence, senescent and weeds.

After separation, the material was packed in a paper bag, weighed and taken to the forced air circulation oven at 65°C for approximately 72 hours until it reached

constant weight according to Silva and Queiroz (2009). The proportion of each morphological component was expressed as a percentage of the total dry mass. The leaf blade: stem ratio was obtained by dividing the dry weight of the leaf blade by the dry weight of the stalk. The volumetric density (kg MS ha⁻¹ cm⁻³) was also estimated by dividing the forage mass by the average height of the forage canopy.

The components: leaf blade, stem and senescent material were separately crushed in Willey mills with a 20 *mesh* sieve and analyzed using near-infrared light reflectance spectroscopy system (NIRS), to quantify crude protein content (CP), neutral detergent fiber (NDF) and digestibility *in vitro* of organic matter (DIVMO), according to Marten et al. (1985), thus determining the nutritional value of each forage fraction.

2.4. Evaluation of animal performance

For the evaluation of animal performance, the animals were treated for worms and external parasites as well as horn fly as needed throughout the experimental period.

Eighty newly weaned Nellore steers with a mean age of 10 months and initial live weight of 210 kg were used. Each system had 24 animals, managed in continuous grazing and variable stocking rate, targeting forage offer of 6% of live weight (6 kg of dry matter for each 100 kg of live weight per day), with the permanence of two test animals per paddock throughout the experimental period, and buffer animals being added according to the pasture support capacity at the time of weighing, according to the technique "put-and-take" (Mott and Lucas, 1952). All paddocks were equipped with a trough for dry minerals supplementation and drinking fountains in adequate quantity and size for supply ad libitum. Steers were

weighed on a digital electronic scale, at intervals of 28 days, after being submitted to a full fast for 12 hours, to adjust the stocking rate and evaluate performance.

To evaluate animal performance, the measured variables were: average daily weight gain (ADG, kg day⁻¹), calculated by the ratio between the difference in weight of the animals, obtained in the interval of two weightings, and the number of days between weightings; the stocking rate (SR, UA ha⁻¹) calculated by the ratio between the number of animal units and the grazed area; and the weight gain per area (GPA, kg ha⁻¹), which was obtained by multiplying the average daily gain of the animals by the number of animals kept per hectare.

2.5. System Efficiency Index

To evaluate land use efficiency for the systems, the efficient land use index (UET), proposed by Willey and Osiru (1972) and Mead and Willey (1980), was used. This index considers the yield of the components of the ICL, ICLF-28 and ICLF-22 systems and relates them to land use equivalence. The UET is calculated as follows:

$$UET = \frac{Y_{ab}}{Y_{aa}} + \frac{Y_{ba}}{Y_{bb}} = UET_a + UET_b$$

where: Y_{ab} and Y_{ba} represent the productivity of crops "a" and "b" in a consortium, with Y_{aa} and Y_{bb} representing the productivity of the respective monocultures. UET_a and UET_b represent the efficient partial land use of crops "a" and "b", respectively. UET value > 1 indicates that productive advantage occurred, UET = 1 no productive advantage occurred, and UET < 1 indicates productive disadvantage.

Considering the productivity data of the ICL, ICLF-28 and ICLF-22 systems, for the components:

Cattle ranching: productivity, in weight gain per hectare, obtained in this study, the

208 ICL system was superior to ICLF-28 and ICLF-22, which did not differ from each

- other, with values 148 kg ha⁻¹, 114 kg ha⁻¹ and 104 kg ha⁻¹, respectively.
- 210 Forest: it was considered the average of Brazilian productivity for eucalyptus forest
- plantation, in an arrangement of 3x2 m and density of 1.667 trees ha⁻¹, of 35.3 m³
- ha⁻¹ year ⁻¹ (IBÁ, 2020). For the ICLF-22 and ICLF-28 systems, with densities of 113
- and 89 trees ha⁻¹, after thinning, the productivities, based on measurements from
- 214 May 2021, were 10.52 and 7.85 m³ ha⁻¹ year ⁻¹, respectively.
- 215 Calculations:
- 216 UET (ICLF-28) = [114 : 148 (steers)] + [7.85 : 35.3 (timber)]
- 217 UET (ICLF-28) = 0.77 (steers) + 0.22 (timber)
- 218 UET (ICLF-28) = 0.99

219

- 220 UET (ICLF-22) = [104 : 148 (steers)] + [10.52 : 35.3 (timber)]
- 221 UET (ICLF-22) = 0.70 (steers) + 0.29 (timber)
- 222 UET (ICLF-22) = 0.99

223

- 224 2.6. Experimental design and statistical analysis
- Experimental design used was randomized blocks in sub-divided plot
- scheme, with four repetitions (paddocks). Treatments on plots correspond to the
- three integrated systems (ICL, ICLF-28 and ICLF-22) and treatments on subplots,
- local major seasons (Summer and Autumn).

$$Y_{ijk} = \mu + B_i + S_j + ij + E_k + SE_{jk} + ijk$$

- Where Y_{ijk} is the response variable in the i-th block of the j-th system and k-th
- station, μ is the constant, B_i is the block effect, S_i the system effect, ij the error a, E_k is
- 232 the station effect, SE_{jk} is the effect of the j-th system on the k-th station and ijk the
- 233 residual error.

The data were submitted to the UNIVARIATE procedure, verifying the adherence of the data to the normal distribution curve. Afterwards, the analysis of variance was performed using the GLM procedure and the means compared by the Tukey test adopting the 5% probability level, with significant interactions adjusted by the LSMEANS procedure. All analyses were performed using the statistical application SAS, version 9.4.

3. Results

3.1. Microclimate

Significant differences were observed in BGT and BGHI between systems and season (P<0.05) and interaction effect (P>0.05). The lowest Tgn value found was in the system with the lowest tree density, ICLF-28 (26.38°C) and the highest value, in the ICL (27.67°C). The ICLF-22 system showed no difference between the ICLF-28 and ICL systems. For BGHI, the ICL presented a value of (76.42) higher than the ICLF-28 (75.27) and ICLF-22 (74.70) systems. Higher BGT and BGHI values were observed in Summer.

Table 1. Average values of black globe temperature (BGT) and black globe humidity index (BGHI), in integrated crop-livestock (ICL) and crop-livestock-forestry systems, ICLF-22 with density of 113 trees and ICLF-28 with 89 trees ha⁻¹, during the Summer (2020) and Autumn (2021), in the Cerrado region in Campo Grande-MS.

Variables	System			Seas	son	CV*	p-value	p-value	p-value
	ICL	ICLF-28	ICLF-22	summer	autumn	CV	System	Season	System x Season
Black globe temperature (°C)	27.67 a	26.38 b	26.49 ab	27.18 a	26.52 b	3.94	0.020	0.001	0.261
BGHI	76.42 a	75.27 b	74.70 b	76.49 a	74.43 b	1.35	0.018	<0.001	0.928

Means followed by the same letters in the rows do not differ by the Tukey test (P>0.05). *CV = Coefficient of variation (%)

3.2. Forage production

The highest values of forage canopy height (P<0.05) were recorded in the ICL (52.61 cm) and ICLF-22 (52.09 cm) systems, when compared to the ICLF-28 system (47.26 cm) (Table 2). In the summer, the highest canopy height (57.67 cm) was obtained in relation to autumn (43.65 cm).

Significant differences between the systems and seasons (P<0.05) were also observed for soil cover, total biomass and volumetric density of the piatã grass (Table 2). The highest values were from the ICL system (89.66%, 4748 kg MS ha⁻¹ and 92.93 kg MS ha⁻¹ cm⁻³, respectively). The ICLF-28 and ICLF-22 systems, statistically similar to each other, showed a reduction of approximately 32.5 and 34.4% in the coverage, 2030 and 2168 kg of MS ha⁻¹ in the total biomass and 33.2 and 41 kg of MS ha⁻¹ cm⁻³ in the volumetric density, in relation to the ICL system. The summer showed 69.98% and 3565 kg of MS ha⁻¹, against (P<0.05) 64.76% and 3132 kg of MS ha⁻¹ in the autumn, for soil cover and total biomass, respectively. As for the volumetric density, the highest (P<0.05) value was recorded during the autumn (74.96 kg of MS ha⁻¹ cm⁻³), and the lowest in the summer (61.44 kg of MS ha⁻¹ cm⁻³).

No significant differences were observed for the percentage of leaves in the forage mass (average of 32.82%) in the production systems evaluated (P>0.05). However, in the summer the percentage of leaves in the grazing stratum was approximately 56.73% higher (P<0.05) than in the autumn.

The highest (P<0.05) values for stem percentage were observed in the ICLF-28 and ICLF-22 systems, and the lowest (P<0.05) value found in the ICL (39.18%), in the summer. However, in the autumn, the ICLF-22 systems for ICL and ICLF-28 did not show significant differences.

The highest (P<0.05) leaf blade: stem ratio was recorded in the ICL system 279 280 (0.99) when compared to ICLF-28 (0.78). Yet, the ICLF-22 system was statistically similar to ICL and ICLF-28. In relation to season, the leaf blade: stem ratio of piatã 281 grass was higher (P<0.05) in the summer, being 50.84% higher than that observed 282 during the autumn. 283 The highest (P<0.05) incidence of photosynthetically active radiation (PAR) 284 occurred in the ICL system with (1362 μ mol m⁻² s⁻¹), and the lowest in ICLF-28 (595 285 μ mol m⁻² s⁻¹), and ICLF-22 (537 μ mol m⁻² s⁻¹), which were similar (P>0.05). In the 286 summer the highest PAR (1179 µmol m⁻² s⁻¹) was reported, while in autumn 683 287

μmol m⁻² s⁻¹was observed.

288

Table 2. Characteristics of the pasture of *Brachiaria brizantha* cv. BRS Piatã (canopy height, soil cover, total biomass, volumetric density, leaf 290 percentage, stem percentage, leaf: stem ratio, photosynthetically active radiation, PAR) in integrated crop-livestock (ICL) and crop-livestock-291 forestry systems (ICLF), with a density of 113 and 89 trees ha⁻¹, during the summer and autumn in the Cerrado region in Campo Grande-MS, 292 in 2020 and 2021.

Variable	System			Season		CV*	p-value	p-value	p-value	
variable		ICL	ICLF-28	ICLF-22	summer	autumn	CV	System	Season	System x Season
Canopy height (cm)		52.61 a	47.26 b	52.09 a	57.67 a	43.65 b	22.79	0.022	<0.001	0.201
Soil cover (%)		89.66 a	57.21 b	55.24 b	69.98 a	64.76 b	11.79	<0.001	<0.001	0.242
Total biomass (kg MS ha ⁻¹)		4748 a	2718 b	2580 b	3565 a	3132 b	30.93	<0.001	0.002	0.700
Volumetric density (kg MS ha ⁻¹ cm ⁻³)		92.93 a	59.69 b	51.97 b	61.44 b	74.96 a	32.24	<0.001	<0.001	0.668
Percentage of leaf (%)		32.89 a	32.27 a	33.31 a	41.88 a	23.76 b	34.35	0.864	<0.001	0.223
Percentage of stem (%)	ILP ILPF-28 ILPF-22				39.18Ba 51.03Aa 47.72Aa	40.06Aa 38.79Ab 40.82Ab	28.79			0.007
Leaf blade:stem ratio	ILFT-22	0.99 a	0.78 b	0.89 ab	1.18 a	0.60 b	62.61	0.012	<0.001	0.058
PAR (μmol m ⁻² s ⁻¹)		1362 a	595 b	537 b	1179a	683 b	44.91	<0.001	<0.001	0.515

²⁹³ Means followed by the same low caps in the row and capital letter in the columns, do not differ by the Tukey test (P>0.05). *CV = Coefficient 294 of variation (%)

3.3. Nutritive value of forage

The crude protein and neutral detergent fiber were affected (P<0.05) by the interaction system x season, and the digestibility *in vitro* of organic matter, had an effect between systems and seasons (P<0.05) (Table 3).

The highest (P<0.05) levels of CP were found in the ICLF-28 and ICLF-22 systems, in both seasons, and the lowest content recorded in the ICL system. Significant differences were observed between the seasons in all systems, with higher CP values (P<0.05) in the autumn, for all systems.

The leaf NDF was higher (P<0.05) only in the ICL system during the summer season compared to autumn (77.00% x 72.96%). NDF levels were similar in the ICLF-28 and ICLF-22 systems in both seasons, with an average of 72.04 and 70.42%, respectively. Observing the systems within each season, it was noted, in both seasons, that the ICL system presented the highest (P<0.05) NDF contents, with the ICLF-28 system being similar to this only in the fall, and the ICLF-22, presenting the lowest (P<0.05) NDF content in the summer and similar to the ICLF-28 in the autumn in both seasons. The highest (P<0.05) NDF values for stems were observed in the ICL, ICLF-28 and ICLF-22 systems in the autumn. However, during the summer, the ICL and ICLF-28 systems showed no significant differences, with the lowest (P<0.05) value found in the ICLF-22 system (76.00%).

The highest percentages of DIVMO were observed in the ICLF-28 and ICLF-22 systems (51.07% and 50.24%, respectively), which did not differ from each other, and the lowest in the ICL (42.76%).

Table 3. Nutritive value of leaf blade and stem *Brachiaria brizantha* cv. BRS Piatã, under integrated crop-livestock (ICL) and crop-livestock-forestry systems (ICLF) with tree density of 113 and 89 trees ha⁻¹, in Summer and Autumn in the Cerrado region in Campo Grande-MS, in 2020 e 2021.

Variable		S	ystem x Seaso	CV*	Sys	p-value stem x Season		
		summer	aı	utumn				
Loof and protein	ICL	6.17 Bb	9	.72 Ba				
Leaf crud protein	ICLF-28 10.79 Ab		13.63 Aa		5.59		0.017	
(CP, %)	ICLF-22	11.08 Ab	13	3.23 Aa				
NDE I - C - I - I - I - I - I - I	ICL 77.00 Ab 72.96 Aa		2.96 Aa					
NDF = Leaf neutral detergent	ICLF-28	73.00 Ba	71.07 ABa		6.28		0.041	
fiber (FDN, %).	ICLF-22	70.50 Ca	70.33 Ba					
- NDF (1)	ICL	81.27 Aa	81.49 Aa					
NDF = Stem neutral detergent	ICLF-28	79.54 Ab	82.56 Aa		5.2		0.001	
fiber (FDN, %).	ICLF-22	-22 76.00 Bb 81.36 Aa						
		Syste	em	CV*	p-value	p-value System x Season		
-	ICL		ICLF-28	ICLF-22				
In vitro digestibility of organic matter (DIVMO, %)	42.76 b		51.07 a	50.24 a	11.68	0.001		
		on			0.300			
matter (DIVINO, 70)	sumi		autu					
Maran Callan additional and the same la	42.21b		53.8		11.68	<0.001	4 4 (D. 0.05) *CV	

Means followed by the same low caps in the row and capital letter in the columns, do not differ by the Tukey test (P>0.05). *CV =

Coefficient of variation (%)

3.4. Animal performance

autumn (60 kg ha^{-1} or 2 @ ha^{-1}).

No significant differences (P>0.05) were observed between the systems and between the seasons (P>0.05) for the average daily gain (ADG, g d-1). However, there was a significant difference (P<0.05), between the systems and the seasons, for weight gain per area (GPA, in kg ha-1), as well as for the interaction system x season for stocking rate (SR, AU ha-1) (Table 4).

In summer, the highest (P<0.05) SR was achieved in ICL (1.93 AU ha-1), followed by ICLF-28 (1.67 AU ha-1) and ICLF-22 (1.39 AU ha-1), similar to that observed in autumn, with values of 1.80, 1.24 and 1.07 AU ha-1 for the ICL, ICLF-28 and ICLF-22 systems, respectively. In terms of season, ICL showed no difference between summer and autumn in terms of SR, while in ICLF-22 and ICLF-28, this rate was lower (P<0.05) in autumn.

The highest (P<0.05) GPA value was recorded in the ICL system (148 kg ha-1) and the lowest values in the ICLF-28 and ICLF-22 systems that did not differ from each other, with an average of 109 kg ha-1. Between seasons, the largest (P<0.05) gains per area were recorded in summer (185 kg ha-1 or 6.16 @ ha-1), compared to

Table 4. Animal performance under integrated crop-livestock (ICL) and crop-livestock-forestry systems, ICLF-22 with 113 trees ha⁻¹ e ICLF-28 with 89 trees ha⁻¹, in Summer and Autumn in the Cerrado region in Campo Grande - MS, in 2020 e 2021.

Variable		System			Season		CV*	p-value	p-value	p-value
variable	•	ICL	ICLF-28	ICLF-22	summer autumn		CV	System	Season	System x Season
Average daily gain (ADG, g d ⁻¹)		638 a	557 a	634 a	659 a	560 a	22.31	0.380	0.108	0.094
	ICL				1.93 Aa	1.80 Aa				
Stocking rate (SR, AU ha ⁻¹)	ICLF-28				1.67 Ba	1.24 Bb	5.59			0.017
	ICLF-22				1.39 Ca	1.07 Cb				
Gain per area		148 a	114 b	104 b	185 a	60 b	19.66	0.011	<0.001	0.253
(GPA, kg ha ⁻¹)		170 a	1140	1040	105 a	00 0	17.00	0.011	\0.001	0.233

Means followed by the same low caps in the row and capital letter in the columns, do not differ by the Tukey test (P>0.05). *CV = Coefficient of variation (%)

4. Discussions

The temperature of the black globe provides a summary of the combined effects of air temperature, radiant thermal energy and wind speed in all possible aspects (Silva, 2000), that is, it represents the thermal sensation of the place where the animal is kept. According to Mota (2001), BGT values between 27 and 34°C indicate a regular situation of animal thermal comfort. According to Baêta (1985), these values would reflect BGHI values within the alert range (74 to 79), characterizing the production environment as thermally comfortable, but with reservations. The shading, however, allowed a decrease of 1.3°C in the temperature of the black globe and 1.5 units in the BGHI in the ICLF systems.

The higher heights of the piatã grass observed in the ICL and ICLF-22 systems (Table 2) may be associated with the availability or restriction of light available to the plant. The ICL receives greater intensity of light radiation in addition to less competition from the natural resources available (Andrade et al., 2016). The result of ICLF-22 is suggestive of the adaptive response of the forage, maximizing the light interception according to what is provided to its environment, in an attempt to reach a high extract and leave the shading (Favare et al., 2018; Gomes et al., 2020), through the mechanism characterized by the elongation of the stems (stylet), usually occurring together with the early flowering of the piatã grass in January and February (Pereira, 2017). accelerated stem and leaf elongation in agroforestry systems under intense shading was also reported by Sousa et al. (2007); Paciullo et al. (2016) and Pereira et al. (2021).

The greater soil cover, total biomass and leaf volumetric density in the ICL system can also be explained by the high availability of radiation (Cruz et al., 2021) and, in ICLF systems, the decrease may be related to microclimatic variability, the

lower PAR (Favare et al., 2018), and shading in the understory (Lopes et al., 2017).

With reduction of radiation in shaded environments, the basal and axillary buds are not activated, and the photoassimilates are allocated to the existing tillers, restricting the emergence of new ones (Paciullo et al., 2008; Bernardino and Garcia, 2009; Paciullo et al., 2011; Baldissera et al., 2016). In summer, with higher cloud coverage, the PAR available in ICLF systems is even more compromised (Larcher, 2000; Gobbi et al, 2009). Gamarra et al. (2017), evaluating the effect of three integration systems, two ICLF with arrangements of 357 and 227 eucalyptus trees ha-1 and one ICL system (control), carrying out performance evaluations of Nelore cattle, observed a reduction in forage availability in places with greater shading in relation to the control system.

Adequate maintenance of the canopy structure and the percentage of leaves are determining factors in voluntary forage consumption and animal performance (Geremia et al., 2018; Souza Filho et al., 2019). Although the total biomass was lower in the ICLF systems compared to the ICL, morphological modifications, such as increase in specific leaf area contributed to maintain the leaf percentage similar to the ICL (Table 2), providing similar average daily gain (ADG) (Table 4). These data show the plasticity of the piatã grass in different environmental conditions and production systems (Garcia and Andrade, 2001).

The leaf blade: stem ratio followed a similar trend to the aerial part, reported in the ICL and ICLF-22 systems (Table 2). Leonel et al. (2009), claim that forages that grow under shading have a lower leaf blade: stem ratio, induced by the allocation of photoassimilates intended for the development of stems, rather than directed to leaf production, which explains the higher percentage of stems in ICLF systems, with a consequent decrease in leaf blade: stem ratio. The similarity of the

ICLF-22 system with the ICL probably occurred due to the variability in functional traits that occurs in forage species, due to the environmental factors acting on the site (Martins et al., 2015). Strategies regarding leaf morphology are also expected in species under PAR limiting conditions. In addition to the occurrence of accelerated stem and leaf elongation, forages tend to have an increase in specific leaf area, have thin leaves and larger petioles, as these characteristics increase the efficiency of light capture (Martins et al., 2015).

According to Santos et al. (2010), the higher the leaf blade: stem ratio, the better its nutritional profile. Thus, there is a greater interest in species that have a high leaf: stem ratio, as they positively influence the production of dry mass and, consequently, animal performance and feed intake behavior (Castro and Paciullo, 2011). In grazing conditions, consumption is directly influenced by the structure of the canopy, by the availability of forage as the leaf blade: stem ratio. However, in the literature there is no description of the ideal proportion, as not always high leaf blade: stem ratio will represent better animal performance results (Ongaratto and Romanzini, 2021).

The light intensity in shaded systems is influenced by the species, time of year, year, arrangements and development of the trees (Fontana et al., 2012). The decrease in PAR in ICLF systems is due to the superior position of the trees in relation to forage, in this condition much of the wavelength in the blue to red range are absorbed first by the leaves of the trees, modifying the quality and quantity of PAR, as well as the light spectrum by reducing the distant red: red ratio (Rodrigues et al., 2014; Santos et al., 2020; Glatzle et al., 2021) available to forage, generating a negative impact on production, as observed in this study.

As plants develop, there is an increase in sclerenchymal tissues (Deinum et

al., 1996), favoring the emergence of fibrous walls and lignification of cellular tissues (Van Soest, 1994). According to Simioni et al. (2014), this process results in a decrease in crude protein (CP), digestibility *in vitro* of organic matter (DIVMO) and an increase in neutral detergent fiber (NDF), as observed when compared to summer and autumn (Table 3).

In systems with trees, the decrease in BGT provides the mitigation of thermal sensation, favoring the mineralization of organic matter, nitrogen cycling and moisture conservation, contributing to the increase in CP levels (Guenni et al., 2008; Mishara et al., 2010; Barros et al., 2019). This increase may also be associated with delay in ontogenetic development of forage, due to the high intensity of shading received (Martins et al., 2020). In this condition, forages tend to be physiologically younger, allowing higher metabolic levels for longer (Paciullo et al., 2011).

During the experimental period, CP levels were mostly above the recommended level of 7% of MS (Van Soest, 1994). Only the ICL system during the summer, it was found to have a content of 6.17%. Lower values decrease the speed at which the forage is degraded, due to the reduction in the development of ruminal microorganisms, affecting dry matter intake, digestibility and animal performance (Medeiros et al., 2015).

For leaf NDF, the average value found was 72.5%, while the stem NDF presented an average of 80.4%, between systems and seasons (Table 3). Van Soest (1994) mentions that NDF is also related to light conditions: as the availability of light increases, there is a decrease in the components of the cell wall causing a dilution due to the structuring of carbohydrates, organic acids and amino acids.

The highest values of NDF of the leaf observed in the summer in the ICL system occurred due to the high temperatures and the increase of the turgor of the

cells, to avoid its rupture (Santana et al., 2021). The lowest values in ICLF systems occurred due to the intensity of shading received, possibly due to the targeting of photoassimilates to increase the photosynthetic capacity of the plant (Deinum et al., 1996), a case that also justifies the lower value of NDF of the stem found in ICLF-22.

Due to the distinct nature of forage tissues, it is expected that the NDF content of the stem becomes higher in relation to the leaves (Alves de Brito et al., 2003). Associating this with the phenotypic plasticity of the piata grass, caused by accelerated stem and leaf elongation, and the maturation of plant cells, due to environmental restrictions, contributed to the largest records were found for all systems during the autumn season.

The DIVMO observed in this experiment is in line with Deinum et al. (1996). As mentioned, shaded environments affect photosynthetic capacity, leading to a limitation in the development of secondary cell wall, which culminates in the formation of less thick walls. The higher DIVMO of the piatã grass in the ICLF systems is related to the higher levels of CP and lower NDF contents of the leaf (Table 3). During the autumn, the DIVMO values increased sharply (53.83%) in relation to the summer (42.21%), due to the better soil moisture conditions provided by the treetops, allowing the forage to remain green during this season (Paciullo et al., 2007). Almeida et al. (2011) and Quintino et al. (2013) also reported better nutritional results of piatã grass in agroforestry systems, as well as in the autumn season.

The main determinant factor of grazing animal performance is feed intake. This, in turn, is affected by the nutritional and structural conditions of the pasture (Euclides et al., 2009). It is known that the leaf fraction represents the most nutritious portion of the forage that, when offered in large percentages, associated

with a high availability of forage, favor the selectivity of the animals (Euclides et al., 2016). Because the ICLF systems have lower biomass compared to the ICL, with an average of 2649 kg of MS ha⁻¹ (Table 2), the similar response of the ADG occurred due to the grazing method adopted.

In both seasons, the ICL system presented a higher SR than the systems with trees (Table 4), due to the higher values of biomass and forage volumetric density (Table 2), due to the adequate adjustment of the stocking rate. For these variables, the ICLF systems were statistically similar. Thus, it is observed that due to the arboreal arrangements used, with a consequent reduction in the PAR, a gradual decrease in the SR occurred (Table 4).

The higher SR observed during the summer compared to the autumn, according to Flores et al. (2008), is due to the need for a greater number of animals to maintain the forage at the appropriate height, due to the better climatic conditions (Paris et al., 2009), since, during the autumn, the development of forage tends to decrease with environmental limitations, which restrict its development (Santos et al., 2011).

With the same ADG between the systems, the response of the GPA varied, mainly due to the SR used. Thus, the best response in GPA was achieved in the ICL system, in relation to ICLF-28 and ICLF-22 (Table 4) thanks to the higher ICL SR in both seasons. This proved that the tree systems could not sustain the same animal productivity when compared to the ICL system. Oliveira et al. (2014), evaluating the performance of Nellore heifers in agroforestry systems, observed that environments with lower tree densities favor a higher GPA, compared to environments with higher tree density.

The UET values of the ICLF systems were the same and varied by 1% in

relation to the ICL system. Considering that the planned thinning carried out in these systems in 2017 removed half of the trees from the initial system for timber sale, and that economic feasibility studies show viable returns (Pereira et al., 2019), they are indicative that ICLF systems are an alternative for diversification in cattle ranching areas.

5. Conclusions

The density of trees on integrated systems negatively affected the availability of forage in the summer, decreasing the stocking rate and weight gain per area. However, it positively affected crude protein content and digestibility of forage in the fall and did not change the average daily gain of the animals.

The use efficiency of the systems was similar among the integrated systems, even though ICLF systems show some losses on forage and animal performance. Once these limitations become known, quantified and accounted for, they could be compensated by other system's gains, such as environmental services, remaining ICLF as an alternative when diversification is necessary on cattle ranching areas.

REFERENCES

Almeida, R. G.; Barbosa, R. A.; Zimmer, A. H. and Kichel, A. N. 2011. Forrageiras em sistemas de produção de bovinos em integração. p. 25-35. In: Bungenstab, D. J. (ed.). Sistemas de integração lavoura-pecuária-floresta: a produção sustentável. Campo Grande, MS: Embrapa Gado de Corte.

Alves de Brito, C. J. F.; Rodella, R. A. and Deschamps, F. C. 2003. Chemical profile of cell wall and its implications on *Brachiaria brizantha* and *Brachiaria humidicola*

- 517 digestibility. Revista Brasileira de Zootecnia 32:1835- 1844.
- 518 <u>http://dx.doi.org/10.1590/S1516-35982003000800005</u>
- Andrade, A. S.; Santos, P. M.; Pezzopane, J. R. M.; Araújo, L. C.; Pedreira, B. C.; Pedreira,
- 520 C. G. S.; Marin, F. R. and Lara, M. A. S. 2016. Simulating tropical forage growth and
- 521 biomass accumulation: an overview of model development and application. Grass
- and Forage Science 71:54-65. https://doi.org/10.1111/gfs.12177
- Aranha, H. S.; Andrighetto, C.; Lupatini, G. C.; Bueno, L. G. F.; Trivelin, G. A.; Mateus,
- 524 G. P.; Luz, P. A. C.; Santos, J. M. F.; Sekiya, B. M. S. and Vaz, R. F. 2019. Produção e
- 525 conforto térmico de bovinos da raça Nelore terminados em sistemas integrados de
- 526 produção agropecuária. Arquivo Brasileiro de Medicina Veterinária e Zootecnia
- 527 71:1686-1694. http://dx.doi.org/10.1590/1678-4162-9913
- Baêta, F. C. 1985. Responses of lactating dairy cows to the combined effects of
- 529 temperature, humidity and wind velocity in the warm season. Thesis (Ph.D.).
- 530 University of Missouri, Columbia.
- Balbino, L. C.; Barcellos, A. O. and Stone, L. F. 2011. Marco referencial: integração
- 532 lavoura-pecuária-floresta. ed. Embrapa, Brasília, DF.
- Balbinot Junior, A. A.; Moraes, A.; Veiga, M.; Pelissari, A. and Dieckow, J. 2009.
- 534 Integração lavoura-pecuária: intensificação de uso de áreas agrícolas. Ciência Rural
- 39:1925-1933. https://doi.org/10.1590/S0103-84782009005000107
- Baldissera, T. C.; Pontes, L. S.; Giostri, A. F.; Barro, R. S.; Lustosa, S. B. C.; Moraes, A.
- end Carvalho, P. C. F. 2016. Sward structure and relationship between canopy height
- and light interception for tropical C4 grasses growing under trees. Crop and Pasture

- 539 Science 67:1199-1207. http://dx.doi.org/10.1071/CP16067
- Barros, J. S.; Meirelles, P. R. L.; Gomes, V. C.; Pariz, C. M.; Fachiolli, D. F.; Santana, E. A.
- R.; Gomes, T. G. J.; Costa, C.; Castilhos, A. M. end Souza, D. M. 2019. Valor nutritivo do
- 542 capim-xaraés em três intensidades luminosas. Arquivo Brasileiro de Medicina
- 543 Veterinária e Zootecnia 71:1703-1711. https://doi.org/10.1590/1678-4162-10801
- Bernardino, F. S. end Garcia, R. 2009. Sistemas silvipastoris. Pesquisa Florestal
- 545 Brasileira 60:77-87. https://doi.org/10.4336/2009.pfb.60.77
- Bond, T. E. and Kelly, C. F. 1955. The globe thermometer in agriculture research.
- 547 Agricultural Engineer 36:251-260.
- Braz, F. P.; Mion, T. D. and Gameiro, A. H. 2012. Análise socioeconômica comparativa
- de sistemas de integração lavoura-pecuária em propriedades rurais nas regiões sul,
- sudeste e centro-oeste do brasil. Informações Econômicas 42:2.
- Carvalho, W. T. V.; Minighin, D. C.; Gonçalves, L. C.; Villanova, D. F. Q.; Mauricio, R. M.
- and Pereira, R. V. G. 2017. Pastagens degradadas e técnicas de recuperação: Revisão.
- 553 PUBVET 11:1036-1045. http://dx.doi.org/10.22256/PUBVET.V11N10.1036-1045
- 554 Castro, C. R. T. end Paciullo, D. S. C. 2011. Forrageiras tropicais tolerantes ao
- sombreamento. p. 1-45. In: Jornada da produção ecológica de ruminantes no
- 556 semiárido. Anais... Mossoró: UFERSA.
- 557 Cruz, N. T.; Pires, A. J. V.; Fries, D. D.; Jardim, R. R.; Sousa, B. M. L.; Dias, D. L. S.;
- Bonomo, P.; Ramos, B. L. P. and Sacramento, M. R. S. V. 2021. Fatores que afetam as
- características morfogênicas e estruturais de plantas Forrageiras. Research, Society
- and Development 10:7. http://dx.doi.org/10.33448/rsd-v10i7.16180

- Deinum, B.; Sulastri, R. D.; Zeinab, M. H. J. and Maassen, A. 1996. Effects of light
- intensity on growth, anatomy and forage quality of two tropical grasses (*Brachiaria*
- 563 brizantha and Panicum maximum var. trichoglume). Netherlands Journal of
- 564 Agricultural Science 44:111-124. https://doi.org/10.18174/njas.v44i2.551
- Euclides, V. P. B.; Macedo, M. C. M.; Valle, C. B.; Difante, G. S.; Barbosa, R. A. and Cacere,
- 566 E. R. 2009. Valor nutritivo da forragem e produção animal em pastagens de
- 567 Brachiaria brizantha. Pesquisa Agropecuária Brasileira 44:98-106.
- 568 <u>https://doi.org/10.1590/S0100-204X2009000100014</u>
- Euclides, V. P. B.; Montagner, D. B.; Barbosa, R. A.; Do Valle, C. B. and Nantes, N. N.
- 570 2016. Animal performance and sward characteristics of two cultivars of *Brachiaria*
- 571 brizantha (BRS Paiaguás and BRS Piatã). Revista Brasileira de Zootecnia 5:85-92.
- 572 <u>https://doi.org/10.1590/S1806-92902016000300001</u>
- Favare, H. G.; Tsukamoto Filho, A. A.; Brito Da Costa, R.; Pasa, M. C. and Favare, L. G.
- 574 2018. Desempenho de forrageiras em sistema silvipastoril com *Caryocar brasiliense*
- 575 Camb. Cultura Agronômica 27:340-353. https://doi.org/10.32929/2446-
- 576 <u>8355.2018v27n3p340-353</u>
- Flores, R. S.; Euclides, V. P. B.; Abrão, M. P. C.; Galbeiro, S.; Difante, G. S. and Barbosa,
- R. M. 2008. Desempenho animal, produção de forragem e características estruturais
- 579 dos capins marandu e xaraés submetidos a intensidades de pastejo. Revista
- 580 Brasileira de Zootecnia 37:1355-1365. https://doi.org/10.1590/S1516-
- 581 <u>35982008000800004</u>
- Fontana, D. C.; Alves, G. M.; Roberti, D.; Moraes, O. L. L. and Gerhardt, A. 2012.
- 583 Estimativa da radiação fotossinteticamente ativa absorvida pela cultura da soja

- 584 através de dados do sensor Modis. Bragantia 71:563-571.
- 585 <u>https://doi.org/10.1590/S0006-87052012000400015</u>
- 586 Garcia, R. and Andrade, C. M. S. 2001. Sistemas silvipastoris na Região Sudeste.
- p.173-187. In: Carvalho, M. M.; Alvim, M. J. and Carneiro, J. C. (ed.). Sistemas
- 588 agroflorestais pecuários: opções de sustentabilidade para áreas tropicais e
- subtropicais. Juiz de Fora: Embrapa-CNPGL; FAO.
- 590 Gamarra, E. L.; Morais, M. G.; Almeida, R. G.; Paludetto, N. A.; Pereira, M. and Oliveira,
- 591 C. C. 2017. Beef cattle production in established integrated systems. Semina:
- 592 Ciências Agrárias 38:3241-3252. https://doi.org/10.5433/1679-
- 593 <u>0359.2017v38n5p3241</u>
- Geremia, E. V.; Crestani, S.; Mascheroni, J. D. C.; Carnevalli, R. A.; Mourão, G. B. end Da
- 595 Silva, S. C. 2018. Sward structure and herbage intake of Brachiaria brizantha cv. Piatã
- 596 in a crop-livestock-forestry integration área. Livestock Science 212:83-92.
- 597 <u>https://doi.org/10.1016/j.livsci.2018.03.020</u>
- Glatzle, S.; Stuerz, S.; Giese, M.; Pereira, M.; Almeida, R. G.; Bungenstab, D. J.; Macedo,
- 599 M. C. M. and Asch, F. 2021. Seasonal dynamics of soil moisture in an integrated-crop-
- 600 livestockforestry system in Central-West Brazil. Agriculture 11:245.
- 601 https://doi.org/10.3390/agriculture11030245
- 602 Gobbi, K. F.; Garcia, R.; Garcez Neto, A. F.; Pereira, O. G.; Ventrella, M. C. and Rocha, G.
- 603 C. 2009. Características morfológicas, estruturais e produtividade do capim-
- 604 braquiária e do amendoim forrageiro submetidos ao sombreamento. Revista
- 605 Brasileira de Zootecnia 38:1645-1654. https://doi.org/10.1590/S1516-
- 606 <u>35982009000900002</u>

- 607 Gomes, F. J.; Pedreira, B. C.; Santos, P. M.; Bosi, C.; Lulu, J. and Pedreira, C. G. S. 2020.
- 608 Microclimate effects on canopy characteristics of shaded palisadegrass pastures in
- a silvopastoral system in the Amazon biome of central Brazil. European Journal of
- 610 Agronomy 115. https://doi.org/10.1016/j.eja.2020.126029
- 611 Guenni, O.; Seiter, S. and Figueroa, R. 2008. Growth responses of three *Brachiaria*
- species to light intensity and nitrogen supply. Tropical Grassland 42:75-87.
- 613 Indústria Brasileira de Árvores IBÁ. 2020. Relatório anual. São Paulo, SP:
- 614 FGV/IBRE/IBÁ. https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-
- 615 <u>2020.pdf.</u> Accessed on: mar. 2022.
- 616 Kichel, A. N.; Costa, J. A. A.; Almeida, R. G. and Paulino, V. T. 2014. Sistemas de
- 617 integração lavoura-pecuária-floresta (ILPF) experiências no Brasil. Boletim de
- 618 Indústria Animal 71:94-105. https://doi.org/10.17523/bia.v71n1p94
- 619 Larcher, W. 2000. Ecofisiologia vegetal. São Carlos: Editora Rima. 531 p.
- 620 Leonel, F. P.; Pererira, J. C.; Costa, M. G.; Marco Júnior, P.; Lara, L. A. and Queiroz, A.
- 621 C. 2009. Comportamento produtivo e características nutricionais do capim-
- 622 braquiária cultivado em consórcio com milho. Revista Brasileira de Zootecnia
- 623 38:177-189. https://doi.org/10.1590/S1516-35982009000100022
- Lopes, C. M.; Paciullo, D. S. C.; Araújo, S. A. C.; Gomide, C. A. M.; Morenz, M. J. F. and
- Villela, S. D. J. 2017. Massa de forragem, composição morfológica e valor nutritivo de
- 626 capim-braquiária submetido a níveis de sombreamento e fertilização. Arquivo
- 627 Brasileiro de Medicina Veterinária e Zootecnia 69:225-233.
- 628 https://doi.org/10.1590/1678-4162-9201

- Macedo, M. C. M. 2009. Integração lavoura e pecuária: o estado da arte e inovações
- 630 tecnológicas. Revista Brasileira de Zootecnia 38:133-146.
- 631 <u>https://doi.org/10.1590/S1516-35982009001300015</u>
- 632 Marten, G. C.; Shenk, J. S. and Barton, F. E. 1985. Near infrared reflectance
- 633 spectroscopy (NIRS), analysis of forage quality. Washington: USDA; ARS, 110p.
- 634 (Agriculture Handbook, 643).
- Martins, D. C.; Villela, S. D. J.; Almeida, R. G.; Araújo, S. A. C.; Silva, L. D.; Paschoaloto,
- 636 J. R. and Martins, P. G. M. A. 2020. Animal performance and nutritional
- characteristics of Piatã-grass in integrated systems. Arquivo Brasileiro de Medicina
- 638 Veterinária e Zootecnia 72:1027-1033. http://dx.doi.org/10.1590/1678-4162-
- 639 <u>11065</u>
- Martins, A. C. F.; Schiavini, I.; Araújo, G. M. and Lopes, S. F. 2015. Capacidade
- adaptativa de espécies do cerrado utilizadas em áreas de recuperação ambiental.
- 642 Revista Árvore 39:543-550. http://dx.doi.org/10.1590/0100-
- 643 <u>67622015000300015</u>
- Mead, R. and Willey, R. W. 1980. The concept of a 'Land Equivalent Ratio' and
- advantages in yields from intercropping. Experimental Agriculture 16:217-228.
- 646 https://doi.org/10.1017/S0014479700010978
- Medeiros, S. R.; Dias, F. R. T. and Malafaia, G. C. 2021. A carne brasileira e sua
- competitividade no mercado internacional. Boletim CiCarne, Campo-Grande, MS,
- 649 EMBRAPA. https://www.cicarne.com.br/wp-content/uploads/2021/05/Boletim-
- 650 <u>CiCarne-43-2021.pdf</u>. Accessed on: nov. 2021.

- Medeiros, S. R.; Gomes, R. C. and Bungenstab, D. J. 2015. Nutrição de bovinos de
- 652 corte: fundamentos e aplicações. Brasília, DF: Embrapa.
- Melo, S. P. and Moraes, M. F. 2015. Adubação em pastagens. p. 14-24. In: Filho, A. O.
- 654 (Org.). Produção e Manejo de bovinos de corte. 1ed. Cuiabá.
- Mishara, A. K.; Tiwari, H. S. and Bhatt, R. K. 2010. Growth, biomass production and
- 656 photosynthesis of Cenchrus ciliaris L. under Acacia tortilis (Forssk.) Hayne based
- 657 silvopastoral systems in semi-arid tropics. Journal of Environmental Biology
- 658 31:987-993.
- Mota, F. S. 2001. Climatologia zootécnica. Pelotas: UFPEL, p.104.
- Mott, G. O. and Lucas, H. L. 1952. The design, conduct and interpretation of grazing
- trials on cultivated and improved pastures. p.1380-1395. In: Proceedings of the
- 662 Sixth International Grassland Congress. Pennsylvania State College, State College,
- 663 PA.
- Oliveira, C. C.; Villela, D. S.; Almeida, R. G.; Alves, F. V.; Behling Neto, A. and Martins,
- P. G. M. A. 2014. Performance of Nellore heifers, forage mass, and structural and
- 666 nutritional characteristics of *Brachiaria brizantha* grass in integrated production
- 667 systems. Tropical Animal Health and Production 46:167-172.
- 668 http://dx.doi.org/10.1007/s11250-013-0469-1
- 669 Ongaratto, F. and RomanzinI, E. P. 2021. Ecossistema pastoril: serviços
- ecossistêmicos, características do dossel e emissão de gases do efeito estufa. p. 83-
- 107. In: Oelke, C. A.; Moraes, G. F.; Galatl, R. L. (Org.). Zootecnia Pesquisa e Práticas
- 672 Contemporâneas, ed. São Paulo.

- Paciullo, D. S. C.; Campos, N. R.; Gomide, C. A. M.; Castro, C. R. T.; Tavela, R. C. and
- Rossiello, R. O. P. 2008. Crescimento do pasto de capim-braquiária influenciado pelo
- 675 nível de sombreamento e pela a estação do ano. Pesquisa Agropecuária Brasileira
- 43:317-323. https://doi.org/10.1590/S0100-204X2008000700017
- Paciullo, D. S. C.; Carvalho, C. A. B.; Aroeira, L. J. M. Morenz, M. J. F.; Lopes, F. C. F. and
- Rossiello, R. O. P. 2007. Morfofisiologia e valor nutritivo do capim-braquiária sob
- sombreamento natural e a sol pleno. Pesquisa Agropecuária Brasileira 42:573-579.
- 680 https://doi.org/10.1590/S0100-204X2007000400016
- Paciullo, D. S. C.; Fernandes, P. B.; Gomide, C. A. M.; Castro, C. R. T.; Sobrinho, F. S. and
- 682 Carvalho, C. A. B. 2011. The growth dynamics in *Brachiaria* species according to
- 683 nitrogen dose and shade. Revista Brasileira de Zootecnia 40:270-276.
- 684 https://doi.org/10.1590/S1516-35982011000200006
- Paciullo, D. S. C.; Gomide, C. A. M.; Castro, C. R.T.; Maurício, R. M.; Fernandes, P. B. and
- Morenz, M. J. F. 2016. Morphogenesis, biomass and nutritive value of *Panicum*
- 687 maximum under different shade levels and fertilizer nitrogen rates. Grass and
- 688 Forage Science 72:590-600. http://doi.wiley.com/10.1111/gfs.12264
- Paris, W.; Cecato, U.; Branco, A. F.; Barbero, L. M. and Galbeiro, S. 2009. Produção de
- 690 novilhas de corte em pastagem de Coastcross-1 consorciada com *Arachis pintoi* com
- 691 e sem adubação nitrogenada. Revista Brasileira de Zootecnia 38:122-129.
- 692 https://doi.org/10.1590/S1516-35982009000100016
- 693 Pereira, M. 2017. Produtividade forrageira, degradabilidade ruminal do capim-piatã
- 694 (*Brachiaria brizantha* cv. BRS Piatã) e desempenho de bovinos de corte em sistemas
- de integração lavoura-pecuária-floresta. Dissertação, Universidade Federal de Mato

- 696 Grosso do Sul, Campo Grande.
- 697 Pereira, M.; Bungenstab, D. J.; Almeida, R. G. end Schwartz. H. J. 2014. An agro-silvo-
- 698 pastoral production system in Brazil. Tropentag 2014, Prague, Czech Republic, 17-
- 699 19. http://dx.doi.org/10.13140/2.1.4501.8883
- Pereira, M.; Morais, M. G.; Fernandes, P. B.; Santos, V. A. C.; Glatzle, S. and Almeida, R.
- 701 G. 2021. Beef cattle production on Piatã grass pastures in silvopastoral systems,
- 702 Tropical Grasslands-Forrajes Tropicales 9:1-12.
- 703 http://dx.doi.org/10.17138/TGFT(9)1-12
- Pereira, M. A.; Almeida, R. G. and Laura, V. A. 2019. Análises econômicas de sistemas
- de Integração Lavoura-Pecuária e Lavoura-Pecuária-Floresta, em Campo Grande,
- MS. p. 62-67. In: Pereira, M. A. (Org.). Avaliação econômica de sistemas de Integração
- 707 Lavoura-Pecuária-Floresta: as experiências da Embrapa. Campo Grande, MS:
- 708 Embrapa Gado de Corte.
- Quintino, A. C.; Abreu, J. G.; Almeida, R. G.; Macedo, M. C. M.; Cabral, L. S. and Galati,
- 710 R. L. 2013. Production and nutritive value of piatã grass and hybrid sorghum at
- 711 different cutting ages. Acta Scientiarum. Animal Sciences 35:243-249.
- 712 https://doi.org/10.4025/actascianimsci.v35i3.18016
- Rodrigues, R. C.; Sousa, T. V. R.; Melo, M. A. A.; Araújo, J. S.; Lana, R. P; Costa, C. S.;
- Oliveira, M. E.; Parente, M. O. M. end Sampaio, I. B. M. 2014. Agronomic, morphogenic
- and structural characteristics of tropical forage grasses in northeast Brazil. Tropical
- 716 Grasslands Forrajes Tropicales 2:214-222.
- 717 https://doi.org/10.17138/TGFT(2)214-222

- Santana, E. A. R.; Costa, C.; Meirelles, P. R. L.; Andrighetto, C.; Mateus, G. P.; Luz, P. A.;
- 719 Aranha, A. S.; Lupatini, G. C.; Fialho, C. A. and Aranha, H. S. 2021. Influence of
- 720 integrated crop-livestock-forest on morphological composition and nutritional
- value of Marandu palisadegrass under continuous grazing. Semina: Ciências
- 722 Agrárias 42:3415-3430. http://dx.doi.org/10.5433/1679-0359.2021v42n6p3415
- Santos, A. R. M.; Gomes, F. J.; Ximenes, E. S. O. C.; Aragão, W. F. D. X. end Silva, A. C.
- 724 2020. Efeito do ambiente luminoso em forrageiras de clima tropical em sistemas
- 725 silvipastoris. Nativa 8:633-642. https://doi.org/10.31413/nativa.v8i5.10883
- Santos, H. G.; Jacomine, P. K. T.; Anjos, L. H. C.; Oliveira, V. A.; Oliveira, J. B.; Coelho, M.
- R.; Lumbreras, J. F. and Cunha, T. J. F. 2006. Sistema brasileiro de classificação de
- 728 solos. 2.ed. Rio de Janeiro: Embrapa Solos.
- Santos, M. E. R.; Fonseca, D. M.; Silva, G. P.; Pimentel, R. M.; Carvalho, V. V. and Silva,
- 730 S. P. 2010. Estrutura do pasto de capim-braquiária com variação de alturas. Revista
- 731 Brasileira de Zootecnia 39:2125-2131. https://doi.org/10.1590/S1516-
- 732 <u>35982010001000004</u>
- Santos, M. E. R.; Gomes, V. M.; Fonseca, D. M.; Albino, R. L.; Silva, S. P. and Santos, A.
- L. 2011. Número de perfilhos do capim-braquiária em regime de lotação contínua.
- 735 Acta Scientiarum. Animal Sciences 33:1-7.
- 736 <u>http://dx.doi.org/10.4025/actascianimsci.v33i1.10440</u>
- 737 Schuster, M. Z.; Lustosa, S. B. C.; Pelissari, A.; Harrison, S. K.; Sulc, R. M.; Deiss, L.;
- Lang, C. R.; Carvalho, P. C. F.; Gazziero, D. L. P. and Moraes, A. 2019. Optimizing forage
- 739 allowance for productivity and weed management in integrated crop-livestock
- 740 systems. Agronomy for Sustainable Development 39:18.

- 741 https://doi.org/10.1007/s13593-019-0564-4
- 742 Silva, D. J. and Queiroz, A. C. 2009. Análise de Alimentos: métodos químicos e
- 543 biológicos. 3ª. ed. Viçosa, MG: UFV.
- 744 Silva, J. W. T.; Souza, B. M. L. and Silva, C. M. 2020. Sistema de integração lavoura-
- 745 pecuária-floresta (ILPF). Ciência Animal 30:71-84.
- Silva, R. G. 2000. Introdução a bioclimatologia animal. São Paulo: Nobel, p. 286.
- 747 Simioni, T. A.; Hoffmann, A.; Gomes Junior, F.; Mousquer, C. J.; Teixeira, U. H. G.;
- 748 Fernandes, G. A.; Botini, L. A. and Paula, D. C. 2014. Senescência, remoção,
- 749 translocação de nutrientes e valor nutritivo em gramíneas tropicais. Publicações em
- 750 Medicina Veterinária e Zootecnia 8:1742.
- 751 Sousa, L. F.; Maurício, R. M.; Gonçalves, L. C.; Saliba, E. O. S. and Moreira, G. R. 2007.
- 752 Produtividade e valor nutritivo da *Brachiaria brizantha* cv. Marandu em um sistema
- 753 silvipastoril. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 59:1029-1037.
- 754 <u>https://doi.org/10.1590/S0102-09352007000400032</u>
- 755 Souza, C. F.; Tinôco, I. F. F.; Baêta, F. C.; Ferreira, W. P. M. and Silva, R. S. 2002.
- 756 Avaliação de materiais alternativos para confecção do termômetro de globo. Ciência
- 757 e Agrotecnologia 26:157-164.
- Souza Filho, W.; Nunes, P. A. A.; Barro, R. S.; Kunrath, T. R.; Almeida, G. M.; Genro, T.
- 759 C. M.; Bayer, C. and Carvalho, P. C. F. 2019. Mitigation of enteric methane emissions
- 760 through pasture management in integrated crop-livestock systems: Trade-offs
- 761 between animal performance and environmental impacts. Journal of Cleaner
- 762 Production 213:968-975. https://doi.org/10.1016/j.jclepro.2018.12.245

Van Soest, P. J. 1994. Nutritional ecology of the ruminant. Ithaca: Cornell University
 6 Press. p. 476.

Willey, R. W. and Osiru, D. S. O. 1972. Studies on mixtures of maize and beans

(*Phaseolus vulgaris*) with particular reference to plant population. The Journal of

Agricultural Science 79:517-529. https://doi.org/10.1017/S0021859600025909

CAPITÚLO 3 - CONSIDERAÇÕES FINAIS

O desenvolvimento sustentável é uns dos paradigmas mais discutidos atualmente. Em âmbito mundial, é nítido observar os impactos econômicos, sociais e ambientais ocasionados pela atual conjuntura da degradação ambiental. Com isso, a busca por práticas de manejos racionais e pesquisas que promovam a sustentabilidade são cada vez mais requeridas. Neste contexto, o sistema de integração lavoura-pecuária-floresta (ILPF), tem-se demonstrado uma alternativa capaz de otimizar o uso das áreas degradadas, combinando cultivos agrícolas, pecuários e arbóreos, de forma simultânea e/ou sequencial, gerando benefícios como aumento de matéria orgânica, sequestro de carbono pelo solo, melhoria das condições microclimáticas e do bem-estar animal, além de atender à demanda da população por produtos sustentáveis.

Nesse estudo buscou-se evidenciar os impactos positivos da produção do capim-piatã e da produção pecuária em sistemas integrados de produção agropecuária no cerrado brasileiro. Os resultados obtidos foram satisfatórios em termos produtivos, confirmando o favorecimento do desenvolvimento do capim-piatã, além do acréscimo da produtividade de bovinos de corte e aumento da taxa de lotação em sistema de ILP.

Entretanto, por se tratar de uma tecnologia com alta complexidade, estudos complementares são indispensáveis para melhor compreensão da produção pecuária dentro do sistema de produção sustentável. Desta maneira, os resultados deste estudo poderão despertar o interesse de trabalhos futuros em busca de novos conhecimentos para maior difusão e adoção do sistema de integração.